cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A160256 a(1)=1, a(2)=2. For n >=3, a(n) = the smallest positive integer not occurring earlier in the sequence such that a(n)*a(n-1)/a(n-2) is an integer.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 16, 18, 24, 12, 10, 30, 5, 36, 15, 48, 20, 60, 7, 120, 14, 180, 21, 240, 28, 300, 35, 360, 42, 420, 11, 840, 22, 1260, 33, 1680, 44, 2100, 55, 2520, 66, 2940, 77, 3360, 88, 3780, 110, 378, 165, 126, 220, 63, 440, 189, 880, 567, 1760
Offset: 1

Views

Author

Leroy Quet, May 06 2009

Keywords

Comments

Is this sequence a permutation of the positive integers?
a(n+2)*a(n+1)/a(n) = A160257(n).
From Alois P. Heinz, May 07 2009: (Start)
After computing about 10^7 elements of A160256 we have
a(10000000) = 2099597439752627193722111679586865799879114417
a(10000001) = 992131130100042530286371815859160
Largest element so far:
a(8968546) = 24941014474345046106920043019655502800839523254002490663461\
524119982890708516899294655028121578883343551450916846444559467340663409\
549447588184641816
Still missing:
19, 23, 27, 29, 31, 32, 37, 38, 41, 43, 45, 46, 47, 53, 54, 57, 58, 59,
61, 62, 64, 67, 69, 71, 72, 73, 74, 76, 79, 81, 82, 83, 86, 87, 89, 90,
92, 93, 94, 95, 96, 97, 101, 103, 105, 106, 107, 108, 109, 111, 112, 113,
114, 115, 116, 118, 122, 123, 124, 125, 127, 128, 129, 131, 133, 134, ...
Primes in sequence so far:
2, 3, 5, 7, 11, 13, 17
The sequence consists of two subsequences, even (=red) and odd (=blue), see plot. (End)
a(n) is the least multiple of a(n-2)/gcd(a(n-1),a(n-2)) that has not previously occurred. - Thomas Ordowski, Jul 15 2015

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a160256 n = a160256_list !! (n-1)
    a160256_list = 1 : 2 : f 1 2 [3..] where
       f u v ws = g ws where
         g (x:xs) | mod (x * v) u == 0 = x : f v x (delete x ws)
                  | otherwise          = g xs
    -- Reinhard Zumkeller, Jan 31 2014
    
  • Maple
    b:= proc(n) option remember; false end:
    a:= proc(n) option remember; local k, m;
          if n<3 then b(n):=true; n
        else m:= denom(a(n-1)/a(n-2));
             for k from m by m while b(k) do od;
             b(k):= true; k
          fi
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, May 16 2009
    # alternative
    A160256 := proc(n)
        local r,m,a,fnd,i ;
        option remember;
        if n <=2 then
            n;
        else
            r := procname(n-2)/igcd(procname(n-1),procname(n-2)) ;
            for m from 1 do
                a := m*r ;
                fnd := false;
                for i from 1 to n-1 do
                    if procname(i) = a then
                        fnd := true;
                        break;
                    end if;
                end do:
                if not fnd then
                    return a ;
                end if;
            end do:
        end if;
    end proc:
    seq(A160256(n),n=1..40) ; # R. J. Mathar, Jul 30 2024
  • Mathematica
    f[s_List] := Block[{k = 1, m = Denominator[ s[[ -1]]/s[[ -2]]]}, While[ MemberQ[s, k*m] || Mod[k*m*s[[ -1]], s[[ -2]]] != 0, k++ ]; Append[s, k*m]]; Nest[f, {1, 2}, 56] (* Robert G. Wilson v, May 17 2009 *)
  • PARI
    LQ(nMax)={my(a1=1,a2=1,L=1/*least unseen number*/,S=[]/*used numbers above L*/);
    while(1, /*cleanup*/ while( setsearch(S,L),S=setminus(S,Set(L));L++);
    /*search*/ for(a=L,nMax, a*a2%a1 & next; setsearch(S,a) & next;
    print1(a","); a1=a2; S=setunion(S,Set(a2=a)); next(2));return(L))} \\ M. F. Hasler, May 06 2009
    
  • PARI
    L=10^4;a=vector(L);b=[1,2];a[1]=1;a[2]=2;sb=2;P2=2;pending=[];sp=0;for(n=3,L,if(issquare(n),b=vecsort(concat(b,pending));sb=n-1;while(sb>=2*P2,P2*=2);sp=0;pending=[]);c=a[n-2]/gcd(a[n-2],a[n-1]);u=0;while(1,u+=c;found=0;s=0;pow2=P2;while(pow2,s2=s+pow2;if((s2<=sb)&&(b[s2]<=u),s=s2);pow2\=2);if((s>0)&&(b[s]==u),found=1,for(i=1,sp,if(pending[i]==u,found=1;break)));if(found==0,break));a[n]=u;pending=concat(pending,u);sp++);a \\ Robert Gerbicz, May 16 2009
    
  • Python
    from math import gcd
    A160256_list, l1, l2, m, b = [1, 2], 2, 1, 1, {1, 2}
    for _ in range(10**3):
        i = m
        while True:
            if not i in b:
                A160256_list.append(i)
                l1, l2, m = i, l1, l1//gcd(l1, i)
                b.add(i)
                break
            i += m # Chai Wah Wu, Dec 09 2014

Extensions

More terms from M. F. Hasler, May 06 2009
Edited by N. J. A. Sloane, May 16 2009

A160218 Index at which n-th prime occurs in A160256, or -1 if the prime never occurs.

Original entry on oeis.org

2, 3, 14, 20, 32, 301, 1065
Offset: 1

Views

Author

M. F. Hasler, May 06 2009

Keywords

Comments

A160256(a(n))=A000040(n) if and only if both Conjectures 1 and 2 are true:
Conjecture 1: Primes occur in A160256 in increasing order.
Conjecture 2: All primes occur in A160256.
Conjecture 3: Except for A160256(4)=4, the least positive integer which does not occur in A160256 up to a given index is always a prime (and thus of the form A160256(a(k)) for some k).
Conjecture 4: A160256(a(n)) is always the least positive integer which did not occur earlier in A160256.

Crossrefs

Programs

  • PARI
    list_A160218(n)={ my(a1=1,a2=1,S=[]); until( isprime(a1) & !print1(#S,",") & !n--, for( a=1,9e9, a*a1%a2 & next; setsearch(S,a) & next; a2=a1; S=setunion(S,Set(a1=a)); /*print1(a",");*/ next(2)); error);vecsort(eval(S)) }

Extensions

Edited by N. J. A. Sloane, May 16 2009
Showing 1-2 of 2 results.