A152015 a(n) = n^3 - n^2 - n.
0, -1, 2, 15, 44, 95, 174, 287, 440, 639, 890, 1199, 1572, 2015, 2534, 3135, 3824, 4607, 5490, 6479, 7580, 8799, 10142, 11615, 13224, 14975, 16874, 18927, 21140, 23519, 26070, 28799, 31712, 34815, 38114, 41615, 45324, 49247, 53390, 57759, 62360
Offset: 0
Links
- Derek Orr, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n^3-n^2-n : n in [0..50]]; // Wesley Ivan Hurt, Aug 13 2014
-
Maple
a:=n->sum(-1+sum(1+sum(1,i=2..n),j=2..n),k=1..n): seq(a(n), n=0..44); # Zerinvary Lajos, Dec 22 2008 A152015:=n->n^3-n^2-n: seq(A152015(k), k=0..100); # Wesley Ivan Hurt, Oct 06 2013
-
Mathematica
lst={};Do[AppendTo[lst,n^3-n^2-n],{n,0,5!}];lst Table[n^3-n^2-n, {n,0,100}] (* Wesley Ivan Hurt, Oct 06 2013 *) LinearRecurrence[{4,-6,4,-1},{0,-1,2,15},50] (* Harvey P. Dale, Sep 08 2024 *)
-
PARI
vector(100, n, (n-1)^3-(n-1)^2-(n-1)) \\ Derek Orr, Aug 13 2014
Formula
G.f.: -x*(1-6*x-x^2)/(1-x)^4. - Bruno Berselli, Jul 27 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Aug 13 2014
E.g.f.: exp(x)*x*(x^2 + 2*x - 1). - Stefano Spezia, Apr 15 2022
Extensions
Offset changed by Bruno Berselli, Jul 27 2012
Comments