cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228275 A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 14, 12, 4, 0, 0, 5, 30, 39, 20, 5, 0, 0, 6, 62, 120, 84, 30, 6, 0, 0, 7, 126, 363, 340, 155, 42, 7, 0, 0, 8, 254, 1092, 1364, 780, 258, 56, 8, 0, 0, 9, 510, 3279, 5460, 3905, 1554, 399, 72, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Comments

A(n,k) is the total sum of lengths of longest ending contiguous subsequences with the same value over all s in {1,...,n}^k:
A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4].
A(1,4) = 4: [1,1,1,1].
A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3].
A(2,3) = 14 = 3+1+1+2+2+1+1+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2].

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,      0,      0, ...
  0, 1,  2,   3,    4,     5,      6,      7, ...
  0, 2,  6,  14,   30,    62,    126,    254, ...
  0, 3, 12,  39,  120,   363,   1092,   3279, ...
  0, 4, 20,  84,  340,  1364,   5460,  21844, ...
  0, 5, 30, 155,  780,  3905,  19530,  97655, ...
  0, 6, 42, 258, 1554,  9330,  55986, 335922, ...
  0, 7, 56, 399, 2800, 19607, 137256, 960799, ...
		

Crossrefs

Rows n=0-11 give: A000004, A001477, A000918(k+1), A029858(k+1), A080674, A104891, A105281, A104896, A052379(k-1), A052386, A105279, A105280.
Main diagonal gives A031972.
Lower diagonal gives A226238.
Cf. A228250.

Programs

  • Maple
    A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)

Formula

A(1,k) = k, else A(n,k) = n/(n-1)*(n^k-1).
A(n,k) = Sum_{i=1..k} n^i.
A(n,k) = Sum_{i=1..k+1} binomial(k+1,i)*A(n-i,k)*(-1)^(i+1) for n>k, given values A(0,k), A(1,k),..., A(k,k). - Yosu Yurramendi, Sep 03 2013

A197654 Triangle by rows T(n,k), showing the number of meanders with length 5(n+1) and containing 5(k+1) L's and 5(n-k) R's, where L's and R's denote arcs of equal length and a central angle of 72 degrees which are positively or negatively oriented.

Original entry on oeis.org

1, 5, 1, 31, 62, 1, 121, 1215, 363, 1, 341, 13504, 20256, 1364, 1, 781, 96875, 500000, 193750, 3905, 1, 1555, 501066, 7321875, 9762500, 1252665, 9330, 1, 2801, 2033647, 72656661, 262609375, 121094435, 6100941, 19607, 1
Offset: 0

Views

Author

Susanne Wienand, Oct 19 2011

Keywords

Comments

Definition of a meander:
A binary curve C is a triple (m, S, dir) such that:
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive L's increment the index of dir,
(d) consecutive R's decrement the index of dir,
(e) the integer m>0 divides the length of S.
Then C is a meander if each value of dir occurs length(S)/m times.
Let T(m,n,k) = number of meanders (m, S, dir) in which S contains m(k+1) L's and m(n-k) R's, so that length(S) = m(n+1).
For this sequence, m = 5, T(n,k) = T(5,n,k).
The values in the triangle were proved by brute force for 0 <= n <= 6. The formulas have not yet been proved in general.
The number triangle can be calculated recursively by the number triangles and A007318, A103371, A194595 and A197653. The first column seems to be A053699. The diagonal right hand is A000012. The diagonal with k = n-1 seems to be A152031 and to start with the second number of A152031. Row sums are in A198257.
The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 29. - Susanne Wienand, Jul 01 2015

Examples

			For n = 5 and k = 2, T(n,k) = 500000
Example for recursive formula:
T(1,5,2) = 10
T(4,5,5-1-2) = T(4,5,2) = 40000
T(5,5,2) = 10^5 + 10*40000 = 500000
Example for closed formula:
T(5,2) = A + B + C + D + E
A = 10^5
B = 10^4 * 10
C = 10^3 * 10^2
D = 10^2 * 10^3
E = 10   * 10^4
T(5,2) = 5 * 10^5 = 500000
Some examples of list S and allocated values of dir if n = 5 and k = 2:
Length(S) = (5+1)*5 = 30 and S contains (2+1)*5 = 15 Ls.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R
dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,0,4,3,2,1,0,4,3,2,1,0,4,3,2,1
  S: L,L,L,L,L,L,L,R,R,L,L,R,R,R,L,R,R,R,L,R,L,L,L,R,R,L,R,R,R,R
dir: 1,2,3,4,0,1,2,2,1,1,2,2,1,0,0,0,4,3,3,3,3,4,0,0,4,4,4,3,2,1
  S: L,L,L,L,L,R,L,L,L,L,L,R,L,R,R,R,R,R,R,R,R,R,R,L,L,L,L,R,R,R
dir: 1,2,3,4,0,0,0,1,2,3,4,4,4,4,3,2,1,0,4,3,2,1,0,0,1,2,3,3,2,1
Each value of dir occurs 30/5 = 6 times.
The triangle begins:
1,
5, 1,
31, 62, 1,
121, 1215, 363, 1,
341, 13504, 20256, 1364, 1,
781, 96875, 500000, 193750, 3905, 1,
...
		

Crossrefs

Programs

  • Maple
    A197654 := (n,k)->(k^4+2*k^3*(1-n)+2*k^2*(2+n+2*n^2)+k*(3+n-n^2-3*n^3)+ n^4+n^3+n^2+n+1)*binomial(n,k)^5/(1+k)^4;
    seq(print(seq(A197654(n, k), k=0..n)), n=0..7);  # Peter Luschny, Oct 20 2011
  • Mathematica
    T[n_, k_] := (k^4 + 2*k^3*(1-n) + 2*k^2*(2+n+2*n^2) + k*(3+n-n^2-3*n^3) + n^4+n^3+n^2+n+1)*Binomial[n, k]^5/(1+k)^4; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, after Peter Luschny *)
  • PARI
    A197654(n,k) = {if(n ==1+2*k,5,(1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n))*binomial(n,k)^5} \\ Peter Luschny, Nov 24 2011
  • Sage
    def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N)))
    def A197654(n,k) : return S(4,n,k)
    for n in (0..5) : print([A197654(n,k) for k in (0..n)])  # Peter Luschny, Oct 24 2011
    

Formula

Recursive formula (conjectured):
T(n,k) = T(5,n,k) = T(1,n,k)^5 + T(1,n,k)*T(4,n,n-1-k), 0 <= k < n
T(5,n,n) = 1 k = n
T(4,n,k) = T(1,n,k)^4 + T(1,n,k) * T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k) * T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k) * T(1,n,n-1-k), 0<= k < n
T(2,n,n) = 1 k = n
T(4,n,k) = A197653
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
Closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D + E, k < n
A = (C(n,k))^5
B = (C(n,k))^4 * C(n,n-1-k)
C = (C(n,k))^3 *(C(n,n-1-k))^2
D = (C(n,k))^2 *(C(n,n-1-k))^3
E = C(n,k) *(C(n,n-1-k))^4 [Susanne Wienand]
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,4). [Peter Luschny, Oct 20 2011]
T(n,k) = A198064(n+1,k+1)C(n,k)^5/(k+1)^4. [Peter Luschny, Oct 29 2011]
T(n,k) = h(n,k)*binomial(n,k)^5, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 5. [Peter Luschny, Nov 24 2011]

A348463 Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and n.

Original entry on oeis.org

12, 126, 728, 2730, 7812
Offset: 2

Views

Author

N. J. A. Sloane, Oct 31 2021

Keywords

Comments

18660 <= a(7) <= 18662, a(8) = 39216, a(9) = 74898, a(10) = 132860.
Table 3 from these references gives the size of the largest bipartite biregular Moore graph of diameter 3 and degrees n and n, and appears to match 2*A002061.

Crossrefs

Formula

Empirical observation: a(n) = 2*(A152031(n-1) + 1) matches terms a(2)-a(6) and a(8)-a(10). - Hugo Pfoertner, Oct 31 2021
a(n) <= 2*A053700(n-1) = 2*(A152031(n-1) + 1) (the Moore bound). - Pontus von Brömssen, Oct 31 2021
Showing 1-3 of 3 results.