cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152271 a(n)=1 for even n and (n+1)/2 for odd n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44
Offset: 0

Views

Author

Philippe Deléham, Dec 01 2008

Keywords

Comments

A000012 and A000027 interleaved. - Omar E. Pol, Mar 12 2012
Run lengths in A128218. - Reinhard Zumkeller, Jun 20 2015
a(n+1) is the number of reversible binary strings of length n+1 with Hamming weight 1 or 2 such that the 1's are separated by an even number of 0's. - Christian Barrientos, Jan 28 2019
Simple continued fraction of -1 + BesselJ(1,2)/BesselJ(2,2) = 1/(1 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(4 + 1/(1 + ... ))))))))). - Peter Bala, Oct 06 2023

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 3*x^5 + x^6 + 4*x^7 + x^8 + ... - _Michael Somos_, Mar 26 2022
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a152271 = a057979 . (+ 2)
    a152271_list = concat $ transpose [repeat 1, [1..]]
    -- Reinhard Zumkeller, Aug 11 2014
    
  • Mathematica
    Table[If[EvenQ[n],1,(n+1)/2],{n,0,120}] (* or *) LinearRecurrence[{0,2,0,-1},{1,1,1,2},120] (* or *) Riffle[Range[60],1,{1,-1,2}] (* Harvey P. Dale, Jan 20 2018 *)
  • PARI
    Vec((1+x-x^2)/(1-2*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=gcd(n+1,(n+1)\2) \\ Charles R Greathouse IV, Mar 13 2012
    
  • Python
    def A152271(n): return n+1>>1 if n&1 else 1 # Chai Wah Wu, Jan 04 2024

Formula

a(n) = 2*a(n-2) - a(n-4) with a(0)=a(1)=a(2)=1 and a(3)=2.
a(n) = (a(n-2) + a(n-3))/a(n-1).
G.f.: (1 + x - x^2)/(1 - 2*x^2 + x^4).
a(n) = A057979(n+2).
a(n)*a(n+1) = floor((n+2)/2) = A008619(n). - Paul Barry, Feb 27 2009
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*0^floor((n-2k)/2). - Paul Barry, Feb 27 2009
a(n) = gcd(floor((n+1)/2), (n+1)). - Enrique Pérez Herrero, Mar 13 2012
G.f.: U(0) where U(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 04 2012
E.g.f.: ((2 + x)*cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 26 2022
a(n) = (-1)^n * a(-2-n) for all n in Z. - Michael Somos, Mar 26 2022