A153792 12 times pentagonal numbers: a(n) = 6*n*(3*n-1).
0, 12, 60, 144, 264, 420, 612, 840, 1104, 1404, 1740, 2112, 2520, 2964, 3444, 3960, 4512, 5100, 5724, 6384, 7080, 7812, 8580, 9384, 10224, 11100, 12012, 12960, 13944, 14964, 16020, 17112, 18240, 19404, 20604, 21840, 23112, 24420
Offset: 0
References
- D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Craig Knecht, Example of 12 overlapping shapes in the order 1 hexagon.
- Eric Weisstein's World of Mathematics, Triangular Grid Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50],n->6*n*(3*n-1)); # Muniru A Asiru, May 10 2018
-
Maple
seq(6*n*(3*n-1),n=0..50); # Robert Israel, Nov 10 2016
-
Mathematica
Table[6n(3n-1),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,12,60},40] (* Harvey P. Dale, Mar 11 2012 *)
-
PARI
a(n)=6*n*(3*n-1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 36*n + a(n-1) - 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 12*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(0)=0, a(1)=12, a(2)=60; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 11 2012
E.g.f.: 6*x*(2 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(3)/4 - Pi/(12*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. (End)
Comments