cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A160711 Cyclops squares: squares (A000290) that are also cyclops numbers (A134808).

Original entry on oeis.org

0, 11025, 19044, 21025, 24025, 32041, 38025, 42025, 47089, 51076, 58081, 59049, 65025, 66049, 67081, 75076, 87025, 93025, 1110916, 1140624, 1170724, 1190281, 1240996, 1270129, 1290496, 1340964, 1350244, 1380625, 1420864, 1430416
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2009

Keywords

Examples

			19044 is in the sequence because it is a square (138^2) and is also a cyclops number (odd number of digits, middle digit is the only zero).
11025 is in the sequence because it is a square (105^2) and is also a cyclops number (odd number of digits, middle digit is the only zero). - _Michael B. Porter_, Jul 09 2016
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1200]^2, And[OddQ@ Length@ #, #[[Ceiling[Length[#]/2]]] == 0, Count[#, 0] == 1] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 08 2016 *)
    cnQ[n_]:=Module[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1 && IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[Range[1200]^2,cnQ]] (* Harvey P. Dale, Mar 19 2018 *)

A332180 a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.

Original entry on oeis.org

0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332181 .. A332189 (variants with different middle digit 1, ..., 9).
Subsequence of A006072 (numbers with mirror symmetry about middle), A153806 (strobogrammatic cyclops numbers), and A204095 (numbers whose decimal digits are in {0,8}).

Programs

  • Maple
    A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
    
  • Python
    def A332180(n): return (10**(n*2+1)//9-10**n)*8

Formula

a(n) = 8*A138148(n) = A002282(2n+1) - 8*10^n.
G.f.: 8*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 8*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A160717 Cyclops triangular numbers.

Original entry on oeis.org

0, 105, 406, 703, 903, 11026, 13041, 14028, 15051, 27028, 36046, 41041, 43071, 46056, 61075, 66066, 75078, 77028, 83028, 85078, 93096, 1110795, 1130256, 1160526, 1180416, 1250571, 1290421, 1330896, 1350546, 1360425, 1380291
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2009

Keywords

Comments

Triangular numbers (A000217) that are also cyclops numbers (A134808).

Examples

			105 is in the sequence since it is both a triangular number (105 = 1 + 2 + ... + 14) and a Cyclops number (number of digits is odd, and the only zero is the middle digit). - _Michael B. Porter_, Jul 08 2016
		

Crossrefs

Programs

  • Maple
    count:= 1: A[1]:= 0:
    for d from 1 to 3 do
      for x from 0 to 9^d-1 do
        L:= convert(x+9^d,base,9);
        X:= add((L[i]+1)*10^(i-1),i=1..d);
        for y from 0 to 9^d-1 do
          L:= convert(y+9^d,base,9);
          Y:= add((L[i]+1)*10^(i-1),i=1..d);
          Z:= Y + 10^(d+1)*X;
          if issqr(1+8*Z) then
            count:= count+1;
            A[count]:= Z;
          fi
    od od od:
    seq(A[i],i=1..count); # Robert Israel, Jul 08 2016
  • Mathematica
    cyclopsQ[n_] := Block[{id=IntegerDigits@n,lg=Floor[Log[10,n]+1]}, Count[id,0]==1 && OddQ@lg && id[[(lg+1)/2]]==0]; lst = {0}; Do[t = n (n + 1)/2; If[ cyclopsQ@t, AppendTo[lst, t]], {n, 0, 1670}]; lst (* Robert G. Wilson v, Jun 09 2009 *)
    cyclpsQ[n_]:=With[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[ Accumulate[ Range[2000]],cyclpsQ]] (* Harvey P. Dale, Nov 05 2024 *)

Extensions

More terms from Robert G. Wilson v, Jun 09 2009
Offset and b-file changed by N. J. A. Sloane, Jul 27 2016

A153807 Strobogrammatic cyclops primes.

Original entry on oeis.org

101, 16091, 1160911, 1180811, 1190611, 1690691, 1880881, 1960961, 1990661, 6110119, 6610199, 6860989, 166906991, 168101891, 169609691, 188906881, 189808681, 196906961, 199609661, 616906919, 661609199, 666101999, 668609899
Offset: 1

Views

Author

Omar E. Pol, Jan 15 2009

Keywords

Comments

Primes in A153806.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2009

A160712 Composite cyclops numbers (A134808).

Original entry on oeis.org

102, 104, 105, 106, 108, 201, 202, 203, 204, 205, 206, 207, 208, 209, 301, 302, 303, 304, 305, 306, 308, 309, 402, 403, 404, 405, 406, 407, 408, 501, 502, 504, 505, 506, 507, 508, 602, 603, 604, 605, 606, 608, 609, 702, 703, 704
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2009

Keywords

Crossrefs

Extensions

Edited by Omar E. Pol, Jul 04 2009

A160725 Cyclops semiprimes.

Original entry on oeis.org

106, 201, 202, 203, 205, 206, 209, 301, 302, 303, 305, 309, 403, 407, 501, 502, 505, 703, 706, 707, 802, 803, 807, 901, 905, 11013, 11014, 11015, 11017, 11019, 11021, 11023, 11029, 11031, 11035, 11038, 11041, 11042, 11051, 11053
Offset: 1

Views

Author

Omar E. Pol, Jun 12 2009

Keywords

Comments

Cyclops numbers (A134808) that are also semiprimes (A001358).

Crossrefs

Programs

  • Maple
    g:= proc(x,n)
      local L,i;
      L:= convert(x+9^(2*n),base,9);
      add((L[i]+1)*10^(i-1),i=1..n)+add((L[i]+1)*10^i,i=n+1..2*n)
    end proc:
    select(t -> numtheory:-bigomega(t)=2,[seq(seq(g(i,n),i=0..9^(2*n)-1),n=1..2)]); # Robert Israel, Jan 20 2019
  • Mathematica
    Select[Range@ 12000, And[OddQ@ #2, #3[[Ceiling[#2/2] ]] == 0, Count[#3, 0] == 1, PrimeOmega@ #1 == 2] & @@ {#, IntegerLength@ #, IntegerDigits@ #} &] (* or *)
    Select[Flatten@ Table[a (10^(d + 1)) + b, {d, 2}, {a, FromDigits /@ Tuples[Range@ 9, {d}]}, {b, FromDigits /@ Tuples[Range@ 9, {d}]}], PrimeOmega@ # == 2 &] (* Michael De Vlieger, Jan 20 2019 *)

A246880 6*((10^n-1)/9)*(10^(n+1))+9*(10^n-1)/9.

Original entry on oeis.org

0, 609, 66099, 6660999, 666609999, 66666099999, 6666660999999, 666666609999999, 66666666099999999, 6666666660999999999, 666666666609999999999, 66666666666099999999999, 6666666666660999999999999, 666666666666609999999999999, 66666666666666099999999999999
Offset: 0

Views

Author

Felix Fröhlich, Sep 06 2014

Keywords

Comments

Numbers of the form 6...609...9 (i.e., consisting of an odd number of digits with the middle digit 0, all digits to the left of the middle digit 6 and all digits to the right of the middle digit 9).

Crossrefs

Programs

  • Magma
    [(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9) : n in [0..15]]; // Wesley Ivan Hurt, Sep 15 2014
  • Maple
    A246880:=n->(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9): seq(A246880(n),n=0..15); # Wesley Ivan Hurt, Sep 15 2014
  • Mathematica
    Table[(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9), {n, 15}] (* Wesley Ivan Hurt, Sep 15 2014 *)
    Join[{0}, CoefficientList[Series[20/(3 x - 300 x^2) + 1/(x^2 - x) + 17/(30 x^2 - 3 x), {x, 0, 30}], x]] (* Wesley Ivan Hurt, Sep 15 2014 *)
  • PARI
    a(n)=6*((10^n-1)/9)*(10^(n+1))+9*(10^n-1)/9
    

Formula

G.f.: 20/(3-300*x)+1/(x-1)+17/(30*x-3); a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3). - Wesley Ivan Hurt, Sep 15 2014

A287092 Strobogrammatic nonpalindromic numbers.

Original entry on oeis.org

69, 96, 609, 619, 689, 906, 916, 986, 1691, 1961, 6009, 6119, 6699, 6889, 6969, 8698, 8968, 9006, 9116, 9696, 9886, 9966, 16091, 16191, 16891, 19061, 19161, 19861, 60009, 60109, 60809, 61019, 61119, 61819, 66099, 66199, 66899, 68089, 68189, 68889, 69069, 69169, 69869, 86098, 86198, 86898, 89068, 89168
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

Nonpalindromic numbers which are invariant under a 180-degree rotation.
Numbers that are the same upside down and containing digits 6, 9.
Intersection of A000787 and A029742.
Union of this sequence and A006072 gives A000787.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{s = {0, 1, 6, 8, 9}, id = IntegerDigits[n]}, If[ Union[ Join[s, id]] == s && (id /. {6 -> 9, 9 -> 6}) == Reverse[id], True, False]]; Select[ Range[0, 89168], fQ[ # ] && ! PalindromeQ[ # ] &]
Showing 1-8 of 8 results.