A153893 a(n) = 3*2^n - 1.
2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471
Offset: 0
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 138.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 2-5, 14.
- Gennady Eremin, Infinite matrix of odd natural numbers. A bit about Sophie Germain prime numbers, arXiv:2501.17090 [math.GM], 2025. See pp. 3, 11.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A283508.
Programs
-
Magma
[3*2^n-1: n in [0..30]]; // Vincenzo Librandi, Oct 28 2011
-
Mathematica
Table[3*2^n - 1 , {n,0,25}] (* G. C. Greubel, Sep 01 2016 *) LinearRecurrence[{3,-2},{2,5},40] (* Harvey P. Dale, Mar 01 2024 *)
-
PARI
a(n)=3*2^n-1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = a(n-1)*2 + 1, a(0)=2.
a(n) = A083329(n+1).
a(n) = A055010(n+1).
G.f.: (2 - x)/((1-x)(1-2x)). - R. J. Mathar, Feb 13 2009
From G. C. Greubel, Sep 01 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 3*exp(2*x) - exp(x). (End)
Extensions
Edited by N. J. A. Sloane, Feb 14 2009
Comments