A154237 a(n) = ( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)).
1, 12, 114, 1008, 8676, 73872, 626184, 5298048, 44791056, 378551232, 3198883104, 27030060288, 228394230336, 1929828955392, 16306120554624, 137778577993728, 1164159319286016, 9836554491620352, 83113874320863744, 702269857101754368
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -30).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-6); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009 -
Magma
I:=[1,12]; [n le 2 select I[n] else 12*Self(n-1)-30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Sep 07 2016
-
Mathematica
Join[{a=1,b=12},Table[c=12*b-30*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011*) LinearRecurrence[{12, -30}, {1, 12}, 25] (* or *) Table[( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)), {n,1,25}] (* G. C. Greubel, Sep 07 2016 *)
-
Sage
[lucas_number1(n,12,30) for n in range(1, 21)] # Zerinvary Lajos, Apr 27 2009
Formula
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 12*a(n-1) - 30*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 12*x + 30*x^2). (End)
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Comments