cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358504 Number of genetic relatives of a person M in a genealogical tree extending back n generations and where everyone has 3 children down to the generation of M.

Original entry on oeis.org

1, 5, 25, 137, 793, 4697, 28057, 168089, 1008025, 6047129, 36280729, 217680281, 1306073497, 7836424601, 47018514841, 282111023513, 1692666010009, 10155995797913, 60935974263193, 365615844530585, 2193695065086361, 13162170386323865, 78973022309554585
Offset: 0

Views

Author

Hans Braxmeier, Nov 19 2022

Keywords

Comments

M has 2 parents, 4 grandparents, and so on up to 2^n ancestors at the top of the tree.
The genetic relatives of M are all descendants of those ancestors.
M is a genetic relative of himself or herself.

Examples

			For n=2, the tree comprises a(2) = 25 people,
      G-------G       G-------G       G = 4 grandparents
     /    |    \     /    |    \      P = 2 parents
    U     U     P---P     U     U     S = 2 siblings
   /|\   /|\     /|\     /|\   /|\    U = 4 uncles (or aunts)
  C C C C C C   S M S   C C C C C C   C = 12 cousins
The spouses of U are not shown and are not genetic relatives of M.
		

Crossrefs

Cf. A154407.
Other numbers of children: A076024 (2), A358598 (4), A358599 (5), A358600 (6), A358601 (7).

Programs

  • Mathematica
    A358504[n_] := 2^n + 3*(6^n-1)/5; Array[A358504, 25, 0] (* or *)
    LinearRecurrence[{9, -20, 12}, {1, 5, 25}, 25] (* Paolo Xausa, Feb 09 2024 *)
  • PARI
    a(n) = (3^(n+1)+5)<Kevin Ryde, Nov 23 2022
  • Python
    for n in range(0,23): print(2**n+3*(6**n-1)//5)
    

Formula

a(n) = 2^n + 3*(6^n - 1)/5.
a(n) = 2*(A154407(n) + 1)/5 - 1. - Hugo Pfoertner, Nov 22 2022

A154410 a(n) = 5*(3*6^n + 2^n)/2.

Original entry on oeis.org

10, 50, 280, 1640, 9760, 58400, 350080, 2099840, 12597760, 75584000, 453498880, 2720983040, 16325877760, 97955225600, 587731271680, 3526387466240, 21158324469760, 126949946163200, 761699675668480, 4570198051389440, 27421188303093760
Offset: 0

Views

Author

Paul Curtz, Jan 09 2009

Keywords

Programs

  • Magma
    [5*(3*6^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
  • Mathematica
    LinearRecurrence[{8,-12},{10,50},30] (* Harvey P. Dale, Apr 27 2018 *)

Formula

a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 6*a(n-1) - 10*2^(n-1).
a(n) = A154407(n+1) - A154407(n).
a(n) = 10*A090040(n).
G.f.: 10*(1-3*x)/((1-2*x)*(1-6*x)). - Jaume Oliver Lafont, Aug 30 2009
E.g.f.: (5/2)*( exp(2*x) + 3*exp(6*x) ). - G. C. Greubel, Sep 16 2016

Extensions

Entries corrected and extended by Paolo P. Lava, Jan 20 2009
Comments turned into formulas by R. J. Mathar, Sep 07 2009
Showing 1-2 of 2 results.