cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+n! for n>0, where p(0,x)=1; see the Example. For an introduction to polynomial reduction, see A192232. The discussion at A192232 Comments continues here:
...
Let R(p,q,s) denote the "reduction of polynomial p by q->s" as defined at A192232. Suppose that q(x)=x^k for some k>0 and that s(x)=s(k,0)*x^(k-1)+s(k,1)*x^(k-2)+...+s(k,k-2)x+s(k,k-1).
...
First, we shall take p(x)=x^n, where n>=0; the results will be used to formulate R(p,q,s) for general p. Represent R(x^n,q,s) by
...
R(x^n)=s(n,0)*x^(k-1)+s(n,1)*x^(k-2)+...+s(n,k-2)*x+s(n,k-1).
...
Then each of the sequences u(n)=s(n,h), for h=0,1,...,k-1, satisfies this linear recurrence relation:
...
u(n)=s(k,0)*u(n-1)+s(k,1)*u(n-2)+...+s(k,k-2)*u(n-k-1)+s(k,k-1)*u(n-k), with initial values tabulated here:
...
n: ..s(n,0)...s(n,1)..s(n,2).......s(n,k-2)..s(n,k-1)
0: ....0........0.......0..............0.......1
1: ....0........0.......0..............1.......0
...
k-2: ..0........1.......0..............0.......0
k-1: ..0........0.......0..............0.......0
k: ..s(k,0)...s(k,1)..s(k,2).......s(k,k-2)..s(k,k-1)
...
That completes the formulation for p(x)=x^n. Turning to the general case, suppose that
...
p(n,x)=p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n-1)*x+p(n,n)
...
is a polynomial of degree n>=0. Then the reduction denoted by (R(p(n,x) by x^k -> s(x)) is the polynomial of degree k-1 given by the matrix product P*S*X, where P=(p(n,0)...p(n,1).........p(n-k)...p(n,n-k+1); X has all 0's except for main diagonal (x^(k-1), x^(k-2)...x,1); and S has
...
row 1: ... s(n,0) ... s(n,1) ...... s(n,k-2) . s(n,k-1)
row 2: ... s(n-1,0) . s(n-1,1) .... s(n-1,k-2) s(n-1,k-1)
...
row n-k+1: s(k,0).... s(k,1) ...... s(k,k-2) ..s(k,k-1)
row n-k+2: p(n,n-k+1) p(n,n-k+2) .. p(n,n-1) ..p(n,n)
*****
As a class of examples, suppose that (v(n)), for n>=0, is a sequence, that p(0,x)=1, and p(n,x)=v(n)+p(n-1,x) for n>0. If q(x)=x^2 and s(x)=x+1, and we write the reduction R(p(n,x)) as u1(n)*x+u2(n), then the sequences u1 and u2 are convolutions with the Fibonacci sequence, viz., let F=(0,1,1,2,3,5,8,...)=A000045 and let G=(1,0,1,1,2,3,5,8...); then u1=G**v and u2=F**v, where ** denotes convolution. Examples (with a few exceptions for initial terms):
...
If v(n)=n! then u1=A192744, u2=A192745.
If v(n)=n+1 then u1=A000071, u2=A001924.
If v(n)=2n then u1=A014739, u2=A027181.
If v(n)=2n+1 then u1=A001911, u2=A001891.
If v(n)=3n+1 then u1=A027961, u2=A023537.
If v(n)=3n+2 then u1=A192746, u2=A192747.
If v(n)=3n then u1=A154691, u2=A192748.
If v(n)=4n+1 then u1=A053311, u2=A192749.
If v(n)=4n+2 then u1=A192750, u2=A192751.
If v(n)=4n+3 then u1=A192752, u2=A192753.
If v(n)=4n then u1=A147728, u2=A023654.
If v(n)=5n+1 then u1=A192754, u2=A192755.
If v(n)=5n then u1=A166863, u2=A192756.
If v(n)=floor((n+1)tau) then u1=A192457, u2=A023611.
If v(n)=floor((n+2)/2) then u1=A052952, u2=A129696.
If v(n)=floor((n+3)/3) then u1=A004695, u2=A178982.
If v(n)=floor((n+4)/4) then u1=A080239, u2=A192758.
If v(n)=floor((n+5)/5) then u1=A124502, u2=A192759.
If v(n)=n+2 then u1=A001594, u2=A192760.
If v(n)=n+3 then u1=A022318, u2=A192761.
If v(n)=n+4 then u1=A022319, u2=A192762.
If v(n)=2^n then u1=A027934, u2=A008766.
If v(n)=3^n then u1=A106517, u2=A094688.

Examples

			The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
		

Crossrefs

Cf. A192232.

Programs

  • Maple
    A192744p := proc(n,x)
        option remember;
        if n = 0 then
            1;
        else
            x*procname(n-1,x)+n! ;
            expand(%) ;
        end if;
    end proc:
    A192744 := proc(n)
        local p;
        p := A192744p(n,x) ;
        while degree(p,x) > 1 do
            p := algsubs(x^2=x+1,p) ;
            p := expand(p) ;
        end do:
        coeftayl(p,x=0,0) ;
    end proc: # R. J. Mathar, Dec 16 2015
  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192744 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192745 *)

Formula

G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - R. J. Mathar, May 04 2014
Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3)
=0. - R. J. Mathar, Dec 16 2015

A120562 Sum of binomial coefficients binomial(i+j, i) modulo 2 over all pairs (i,j) of positive integers satisfying 3i+j=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 3, 2, 4, 3, 5, 1, 4, 3, 4, 2, 5, 3, 5, 2, 5, 4, 6, 3, 7, 5, 8, 1, 6, 4, 5, 3, 7, 4, 7, 2, 6, 5, 7, 3, 8, 5, 8, 2, 7, 5, 7, 4, 9, 6, 10, 3, 9, 7, 10, 5, 12, 8, 13, 1
Offset: 0

Views

Author

Sam Northshield (samuel.northshield(AT)plattsburgh.edu), Aug 07 2006

Keywords

Comments

a(n) is the number of 'vectors' (..., e_k, e_{k-1}, ..., e_0) with e_k in {0,1,3} such that Sum_{k} e_k 2^k = n. a(2^n-1) = F(n+1)*a(2^{k+1}+j) + a(j) = a(2^k+j) + a(2^{k-1}+j) if 2^k > 4j. This sequence corresponds to the pair (3,1) as Stern's diatomic sequence [A002487] corresponds to (2,1) and Gould's sequence [A001316] corresponds to (1,1). There are many interesting similarities to A000119, the number of representations of n as a sum of distinct Fibonacci numbers.
A120562 can be generated from triangle A177444. Partial sums of A120562 = A177445. - Gary W. Adamson, May 08 2010
The Ca1 and Ca2 triangle sums, see A180662 for their definitions, of Sierpinski's triangle A047999 equal this sequence. Some A120562(2^n-p) sequences, 0 <= p <= 32, lead to known sequences, see the crossrefs. - Johannes W. Meijer, Jun 05 2011

Examples

			a(2^n)=1 since a(2n)=a(n).
		

Crossrefs

Cf. A001316 (1,1), A002487 (2,1), A120562 (3,1), A112970 (4,1), A191373 (5,1).
Cf. A177444, A177445. - Gary W. Adamson, May 08 2010
Cf. A000012 (p=0), A000045 (p=1, p=2, p=4, p=8, p=16, p=32), A000071 (p=3, p=6, p=12, p=13, p=24, p=26), A001610 (p=5, p=10, p=20), A001595 (p=7, p=14, p=28), A014739 (p=11, p=22, p=29), A111314 (p=15, p=30), A027961 (p=19), A154691 (p=21), A001911 (p=23). - Johannes W. Meijer, Jun 05 2011
Same recurrence for odd n as A000930.

Programs

  • Maple
    p := product((1+x^(2^i)+x^(3*2^i)), i=0..25): s := series(p, x, 1000): for k from 0 to 250 do printf(`%d, `, coeff(s, x, k)) od:
    A120562:=proc(n) option remember; if n <0 then A120562(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A120562(n/2) else A120562((n-1)/2) + A120562((n-3)/2); fi; end: seq(A120562(n),n=0..64); # Johannes W. Meijer, Jun 05 2011
  • Mathematica
    a[0] = a[1] = 1; a[n_?EvenQ] := a[n] = a[n/2]; a[n_?OddQ] := a[n] = a[(n-1)/2] + a[(n-1)/2 - 1]; Table[a[n], {n, 0, 64}] (* Jean-François Alcover, Sep 29 2011 *)
    Nest[Append[#1, If[EvenQ@ #2, #1[[#2/2 + 1]], Total@ #1[[#2 ;; #2 + 1]] & @@ {#1, (#2 - 1)/2}]] & @@ {#, Length@ #} &, {1, 1}, 10^4 - 1] (* Michael De Vlieger, Feb 19 2019 *)

Formula

Recurrence; a(0)=a(1)=1, a(2*n)=a(n) and a(2*n+1)=a(n)+a(n-1).
G.f.: A(x) = Product_{i>=0} (1 + x^(2^i) + x^(3*2^i)) = (1 + x + x^3)*A(x^2).
a(n-1) << n^x with x = log_2(phi) = 0.69424... - Charles R Greathouse IV, Dec 27 2011

Extensions

Reference edited and link added by Jason G. Wurtzel, Aug 22 2010

A166863 a(1)= 1; a(2)= 5; thereafter a(n)= a(n-1) + a(n-2) + 5.

Original entry on oeis.org

1, 5, 11, 21, 37, 63, 105, 173, 283, 461, 749, 1215, 1969, 3189, 5163, 8357, 13525, 21887, 35417, 57309, 92731, 150045, 242781, 392831, 635617, 1028453, 1664075, 2692533, 4356613, 7049151, 11405769, 18454925, 29860699, 48315629, 78176333, 126491967
Offset: 1

Views

Author

Geoff Ahiakwo, Oct 22 2009

Keywords

Examples

			a(3) = 5 + 1 + 5 = 11.
		

Crossrefs

Programs

  • Haskell
    a166863 n = a166863_list !! (n-1)
    a166863_list = 1 : zipWith (+) a166863_list (drop 3 $ map (* 2) a000045_list)
    -- Reinhard Zumkeller, Nov 17 2013
  • Mathematica
    2 * Fibonacci[Range[4,4! ]] - 5 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
    RecurrenceTable[{a[1]==1,a[2]==5,a[n]==a[n-1]+a[n-2]+5},a,{n,40}] (* or *) LinearRecurrence[{2,0,-1},{1,5,11},40] (* Harvey P. Dale, Jan 29 2021 *)

Formula

a(n) = A154691(n) - 2 = 2*A000045(n+3) - 5. - R. J. Mathar, Oct 26 2009
From R. J. Mathar, Oct 26 2009: (Start)
a(n) = 2*a(n-1) - a(n-3).
G.f: x*(1+3*x+x^2)/((x-1)* (x^2+x-1)). (End)
a(n+1) = a(n) + 2*A000045(n+2). - Reinhard Zumkeller, Nov 17 2013

Extensions

Missing value for a(29) inserted by Reinhard Zumkeller, Nov 17 2013

A192748 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 4, 11, 24, 47, 86, 151, 258, 433, 718, 1181, 1932, 3149, 5120, 8311, 13476, 21835, 35362, 57251, 92670, 149981, 242714, 392761, 635544, 1028377, 1663996, 2692451, 4356528, 7049063, 11405678, 18454831, 29860602, 48315529, 78176230
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+3n for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 3 n;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A154691 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192748 *)

Formula

Conjecture: G.f.: -x^2*(1+x+x^2) / ( (x^2+x-1)*(x-1)^2 ), so the first differences are in A154691. - R. J. Mathar, May 04 2014
Showing 1-4 of 4 results.