A192744
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0
The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
-
A192744p := proc(n,x)
option remember;
if n = 0 then
1;
else
x*procname(n-1,x)+n! ;
expand(%) ;
end if;
end proc:
A192744 := proc(n)
local p;
p := A192744p(n,x) ;
while degree(p,x) > 1 do
p := algsubs(x^2=x+1,p) ;
p := expand(p) ;
end do:
coeftayl(p,x=0,0) ;
end proc: # R. J. Mathar, Dec 16 2015
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192744 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192745 *)
A154691
Expansion of (1+x+x^2) / ((1-x)*(1-x-x^2)).
Original entry on oeis.org
1, 3, 7, 13, 23, 39, 65, 107, 175, 285, 463, 751, 1217, 1971, 3191, 5165, 8359, 13527, 21889, 35419, 57311, 92733, 150047, 242783, 392833, 635619, 1028455, 1664077, 2692535, 4356615, 7049153, 11405771, 18454927, 29860701, 48315631, 78176335
Offset: 0
-
a154691 n = a154691_list !! n
a154691_list = 1 : zipWith (+)
a154691_list (drop 2 $ map (* 2) a000045_list)
-- Reinhard Zumkeller, Nov 17 2013
-
A154691:= func< n | 2*Fibonacci(n+3) - 3 >;
[A154691(n): n in [0..40]]; // G. C. Greubel, Jan 18 2025
-
A154691 := proc(n) coeftayl( (1+x+x^2)/(1-x-x^2)/(1-x),x=0,n) ; end proc:
-
Fibonacci[Range[3,60]]*2 -3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
CoefficientList[Series[(1 + x + x^2)/((1 - x - x^2)(1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
-
Vec((1+x+x^2) / ((1-x-x^2)*(1-x)) + O(x^60)) \\ Colin Barker, Feb 01 2017
-
def A154691(n): return 2*fibonacci(n+3) - 3
print([A154691(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025
A166876
a(n) = a(n-1) + Fibonacci(n), a(1)=1983.
Original entry on oeis.org
1983, 1984, 1986, 1989, 1994, 2002, 2015, 2036, 2070, 2125, 2214, 2358, 2591, 2968, 3578, 4565, 6162, 8746, 12927, 19692, 30638, 48349, 77006, 123374, 198399, 319792, 516210, 834021, 1348250, 2180290, 3526559, 5704868, 9229446, 14932333, 24159798
Offset: 1
For s=1983, n=3, we have k= A166863(2)= 5, a(3) = (2s+1+k)/2 = (2*1983+1+5)/2 = 1986.
For n=3, a(3)= a(1)+ k(3)/2 = a(1)+ [K(3-2)+ k(3-1)]/2 + 2 = a(1)+ 1 + 2 thus if a(1)is 0, a(3)= 3; if a(1)= 5, a(3)= 8; if a(1)=1983, a(3)= 1986, etc. [_Geoff Ahiakwo_, Nov 19 2009]
-
LinearRecurrence[{2, 0, -1}, {1983, 1984, 1986}, 100] (* G. C. Greubel, May 27 2016 *)
A192756
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 6, 17, 38, 75, 138, 243, 416, 699, 1160, 1909, 3124, 5093, 8282, 13445, 21802, 35327, 57214, 92631, 149940, 242671, 392716, 635497, 1028328, 1663945, 2692398, 4356473, 7049006, 11405619, 18454770, 29860539, 48315464, 78176163
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A166863 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192756 *)
Showing 1-4 of 4 results.
Comments