cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025

A116371 Number of partitions of n into parts with digital root = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 30, 30, 31, 34, 38, 41, 43, 44, 45, 45, 45, 46, 50, 55, 60, 63, 65, 66, 67, 67, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2006

Keywords

Comments

a(n) = A114102(n) - A116372(n) - A116373(n) - A116374(n) - A116375(n) - A116376(n) - A116377(n) - A116378(n) - A114099(n).

Examples

			a(18) = #{10+8x1, 18x1} = 2;
a(19) = #{19, 10+9x1, 19x1} = 3;
a(20) = #{19+1, 10+10, 10+10x1, 19x1} = 4.
		

Crossrefs

Cf. A010888.
A147706. [From Reinhard Zumkeller, Nov 11 2008]
A017173, A156144, A156145. [From Reinhard Zumkeller, Feb 05 2009]

Programs

  • Haskell
    a116371 n = p a017173_list n where
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 04 2014

A156144 Number of partitions of n into parts having in decimal representation the same digital root as n has.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 3, 1, 1, 2, 1, 1, 3, 5, 2, 5, 1, 1, 2, 1, 1, 5, 8, 4, 8, 2, 1, 4, 1, 1, 7, 13, 5, 13, 2, 2, 5, 1, 1, 11, 20, 9, 19, 3, 2, 9, 1, 1, 15, 31, 12, 29, 4, 3, 11, 2, 1, 22, 46, 20, 42, 7, 4, 18, 2, 2, 30, 68, 27, 61, 9, 6, 23, 3, 2, 42, 98, 42, 85
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2009

Keywords

Comments

a(n) <= a(n+9); Max{n: a(n)=1} = 71;
A156145 and A017173 give record values and where they occur: a(A017173(n-1))=A156145(n);
a(A017173(n)) = A116371(A017173(n)).

Examples

			a(19) = #{19, 10+1+1+1+1+1+1+1+1+1, 19x1} = 3;
a(20) = #{20, 2+2+2+2+2+2+2+2+2+2} = 2;
a(21) = #{21, 3+3+3+3+3+3+3, 12+3+3+3} = 3;
a(22) = #{22} = 1;
		

Crossrefs

Programs

  • Haskell
    a156144 n = p [x | x <- [1..n], a010888 x == a010888 n] n where
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 04 2014
Showing 1-3 of 3 results.