A156153
Primes p such that p == 2 (mod pi(p)) and pi(p) is prime.
Original entry on oeis.org
5, 41, 367, 9559817, 514275529
Offset: 1
-
p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p-2)%c & next; print1(p, ", ")); \\ Modified by Jinyuan Wang, Feb 22 2020
A156151
Primes p such that p+2 = 0 (mod pi(p)), where pi(p)=A000720(p) is the prime counting function.
Original entry on oeis.org
2, 31, 353, 9559783, 9559843, 9559903, 3779853313, 27788573801, 204475054073, 204475054723, 1505578024807, 1505578025779, 241849345578351691, 1784546064357413809, 1784546064357419959, 97199410027249994623, 97199410027250046643, 97199410027250047453, 97199410027250123143
Offset: 1
A328022
Prime numbers p such that all 4 variables of the equation (p = i * q + r) are prime, with i being the index of p, q the quotient of p/i, and r the remainder of p/i.
Original entry on oeis.org
17, 41, 367, 514275529
Offset: 1
Known values:
n | a(n) = p = i * q + r
===+==============================
1 | 17 = 7 * 2 + 3
2 | 41 = 13 * 3 + 2
3 | 367 = 73 * 5 + 2
4 | 514275529 = 27067133 * 19 + 2
-
Select[Prime@ Range[10^5], AllTrue[Join[{#1, #2}, QuotientRemainder[#1, #2]], PrimeQ] & @@ {#, PrimePi@ #} &] (* Michael De Vlieger, Oct 01 2019 *)
-
lista(nn)={my(i=1); forprime(p=3, nn, i++; if(isprime(i), my(q=p\i); if(isprime(q)&&isprime(p-q*i), print1(p, ", ")) ))} \\ Andrew Howroyd, Oct 01 2019
Showing 1-3 of 3 results.
Comments