cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A383675 Number of n-digit terms in A157711.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 2, 1, 4, 9, 5, 8, 3, 9, 9, 12, 6, 14, 4, 5, 9, 8, 10, 13, 10, 8, 19, 17, 15, 20, 16, 27, 16, 26, 14, 23, 18, 26, 22, 40, 23, 21, 18, 32, 24, 29, 15, 33, 21, 25, 33, 34, 25, 25, 22, 47, 30, 40, 25, 37, 29, 38, 33, 47, 30, 41, 37, 45, 41, 46, 33, 42, 36, 52, 39, 48, 28, 49, 37
Offset: 1

Views

Author

Hans Havermann, May 29 2025

Keywords

Comments

The b-file terms are based on probable prime counts that have been verified correct (by counting proven primes) to index 200. Subsequent terms (as they get larger) seemingly face an increasing probability of counting a probable prime that is actually a composite but it is unknown if such probability is ever large enough to impact the intended proven prime count.

Examples

			There are two A157711 terms (1011001, 1100101) containing 7 digits, so a(7) = 2.
		

Crossrefs

Cf. A157711.

A038446 Sums of 4 distinct powers of 10.

Original entry on oeis.org

1111, 10111, 11011, 11101, 11110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100, 1000111, 1001011, 1001101, 1001110, 1010011, 1010101, 1010110, 1011001, 1011010, 1011100, 1100011, 1100101, 1100110, 1101001, 1101010, 1101100, 1110001
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Total/@Subsets[10^Range[0,6],{4}]//Union (* Harvey P. Dale, Nov 07 2021 *)
  • Python
    from itertools import islice
    def A038446_gen(): # generator of terms
        yield int(bin(n:=15)[2:])
        while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:])
    A038446_list = list(islice(A038446_gen(),20)) # Chai Wah Wu, Mar 11 2025

Extensions

Offset corrected by Amiram Eldar, Jul 12 2022

A165508 Numbers k such that 10^k + 111 is prime.

Original entry on oeis.org

2, 4, 184, 460, 784, 3248, 5194, 92386, 156428, 228208
Offset: 1

Views

Author

Rick L. Shepherd, Sep 21 2009

Keywords

Comments

Terms must be congruent to 2 or 4 mod 6. Other than the first term, which produces 10^2 + 111 = 211, these terms produce primes whose decimal representation is 1 111 concatenated. These are only known to be highly probable primes for 184 and beyond. No more terms up to 15000.
a(8) > 55000. - Tyler NeSmith, Jul 10 2021
The corresponding primes have digit sum 4 (A062339). - Jeppe Stig Nielsen, Feb 10 2023
a(9) > 10^5. - Jeppe Stig Nielsen, Feb 11 2023
a(11) > 6.6*10^5. - Boyan Hu, Nov 14 2024

Examples

			As 10111 = 10^4 + 111 is a prime, 4 is a term.
		

Crossrefs

Programs

Extensions

a(8) from Jeppe Stig Nielsen, Feb 10 2023
a(9)-a(10) from Boyan Hu, Oct 23 2024

A222962 Primes of the form kk*k+k+1, where kk is the concatenation of k with itself.

Original entry on oeis.org

13, 47, 103, 181, 281, 547, 10111, 14557, 22741, 25873, 29207, 44563, 48907, 53453, 90931, 103457, 110023, 116791, 161641, 169823, 178207, 186793, 195581, 232753, 242551, 273157, 283763, 305581, 316793, 440023, 523657, 538303, 568201, 614563, 662743
Offset: 1

Views

Author

Vincenzo Librandi, Mar 18 2013

Keywords

Comments

Corresponding values of k are: 1, 2, 3, 4, 5, 7, 10, 12, 15, 16, 17, 21, 22, 23, 30, 32, 33, 34, 40, 41, 42, 43, 44, 48, 49, 52, 53, 55, 56, 66, 72, 73, 75, 78, 81, 82, 83, 92,...
a(7), a(43) and a(204) (see b-file) have the form 10^(3n+1)+10^(2n)+10^n+1 = (10^(n+1)*10^n+10^n)*10^n+10^n+1. The next term of this type is 10^247+10^164+10^82+1.

Examples

			22741 is in the sequence because it is prime and 22741=1515*15+15+1.
		

Crossrefs

Programs

  • Magma
    [p: n in [0..100] | IsPrime(p) where p is Seqint(Intseq(n) cat Intseq(n))*n+n+1]; // Bruno Berselli, Mar 21 2013
  • Mathematica
    f[n_] := FromDigits@Flatten@IntegerDigits[{n, n}] n + n + 1; Select[Table[f[n], {n, 100}], PrimeQ] (* Bruno Berselli, Mar 21 2013 *)
    Select[Table[n(n*10^IntegerLength[n]+n)+n+1,{n,100}],PrimeQ] (* Harvey P. Dale, Oct 29 2023 *)

Extensions

Edited by Bruno Berselli, Mar 22 2013

A383918 Primes made up of 0's and five 1's only.

Original entry on oeis.org

101111, 10011101, 10101101, 10110011, 10111001, 11000111, 11100101, 100100111, 100111001, 101001011, 101100011, 110010101, 110101001, 111000101, 111001001, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001
Offset: 1

Views

Author

René-Louis Clerc, May 15 2025

Keywords

Comments

Expression of the primes that are 0-successors of the preprime 11111 (= 41*271); they constitute the infinite set of secondary primes with five 1's and zeros denoted {11111} (Definitions 1, 2, 3, 4 of Clerc).

Crossrefs

Programs

  • Maple
    f:= proc(n) local R,c,i;
     sort(select(isprime, [seq(1+10^(n-1) + add(10^i,i=c), c=combinat:-choose(n-2,3))]))
    end proc:
    map(op,[seq(f(i),i=6..10)]); # Robert Israel, May 29 2025
  • PARI
    list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, my(p=10^i+10^j+10^k+10^r+1); isprime(p) && print1(p, ", ")))))
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A383918_gen(): # generator of terms
        for a in count(4):
            for b in range(3,a):
                for c in range(2,b):
                    for d in range(1,c):
                        if isprime(p:=10**a+10**b+10**c+10**d|1):
                            yield(p)
    A383918_list = list(islice(A383918_gen(),30)) # Chai Wah Wu, May 29 2025

A383919 Primes made up of 0's and seven 1's only.

Original entry on oeis.org

11110111, 11111101, 101101111, 101111011, 110111011, 111010111, 1001110111, 1010011111, 1011110011, 1100101111, 1101010111, 1101110011, 1110011101, 1110110011, 1111100101, 1111110001, 10010110111, 10011101011, 10011110101, 10100111101, 10111001011, 10111110001, 11001011101
Offset: 1

Views

Author

René-Louis Clerc, May 15 2025

Keywords

Comments

Expression of the primes that are 0-successors of the preprime 1111111 (= 239*4649); they constitute the infinite set of secondary primes with seven 1's and zeros denoted {1111111} (Definitions 1, 2, 3, 4 of Clerc).

Crossrefs

Intersection of A020449 and A062337.

Programs

  • PARI
    list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, for(l=1, r-1, for(m=1, l-1, my(p=10^i+10^j+10^k+10^r+10^l+10^m+1); isprime(p) && print1(p, ", ")))))))
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A383919_gen(): # generator of terms
        for a in count(6):
            for b in range(5,a):
                for c in range(4,b):
                    for d in range(3,c):
                        for e in range(2,d):
                            for f in range(1,e):
                                if isprime(p:=10**a+10**b+10**c+10**d+10**e+10**f|1):
                                    yield(p)
    A383919_list = list(islice(A383919_gen(),23)) # Chai Wah Wu, May 28 2025
Showing 1-6 of 6 results.