cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A157975 Primes p such that 16*p + 15 is also prime.

Original entry on oeis.org

2, 7, 11, 13, 23, 29, 37, 53, 61, 67, 71, 79, 89, 97, 103, 109, 113, 131, 137, 139, 149, 167, 179, 197, 211, 223, 257, 277, 293, 313, 317, 337, 379, 383, 397, 419, 431, 439, 443, 467, 571, 601, 617, 631, 641, 643, 653, 659, 677, 691, 719, 733, 739, 743, 809
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(16*n + 15)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=15;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[1000]], PrimeQ[16 # + 15]&] (* Vincenzo Librandi, Feb 03 2014 *)

A157978 Primes p such that 4*p - 3 is also a prime.

Original entry on oeis.org

2, 5, 11, 19, 23, 29, 59, 61, 71, 79, 89, 101, 103, 109, 113, 131, 149, 151, 191, 193, 233, 239, 263, 283, 313, 331, 353, 359, 373, 389, 401, 431, 439, 479, 499, 521, 523, 541, 569, 571, 599, 619, 631, 653, 659, 673, 683, 701, 709, 739, 743, 751, 761, 773, 829
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(4*n - 3)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=3;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p-q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[1000]],PrimeQ[4 # - 3]&] (* Vincenzo Librandi, Feb 03 2014 *)

A157976 Primes p such that 18*p + 17 is also prime.

Original entry on oeis.org

2, 3, 5, 13, 19, 23, 37, 47, 53, 67, 79, 83, 89, 103, 109, 149, 157, 167, 193, 229, 233, 257, 263, 277, 313, 347, 349, 383, 389, 419, 439, 457, 467, 487, 499, 523, 563, 569, 593, 599, 619, 677, 719, 727, 769, 773, 823, 829, 857, 863, 877, 937, 1013, 1039, 1049
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..1100] | IsPrime(n) and IsPrime(18*n + 17)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=17;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[1000]], PrimeQ[18 # + 17]&] (* Vincenzo Librandi, Feb 03 2014 *)

A157977 Primes p such that 20*p + 19 is also prime.

Original entry on oeis.org

2, 3, 11, 17, 23, 29, 41, 71, 101, 149, 167, 233, 239, 251, 263, 269, 281, 293, 317, 347, 353, 401, 449, 461, 491, 503, 557, 563, 569, 647, 683, 743, 797, 857, 941, 947, 953, 977, 1019, 1031, 1091, 1103, 1151, 1163, 1193, 1217, 1283, 1289, 1319, 1361, 1373
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(20*n + 19)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=19;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[250]],PrimeQ[20#+19]&] (* Harvey P. Dale, Jul 04 2011 *)

A127464 Primes p such that 12p - 11 and 12p + 11 are also primes.

Original entry on oeis.org

29, 101, 109, 151, 199, 211, 239, 251, 389, 491, 571, 631, 641, 809, 811, 1009, 1021, 1039, 1061, 1201, 1229, 1429, 1459, 1481, 1511, 1621, 1721, 2029, 2111, 2131, 2789, 2801, 2909, 2939, 2999, 3121, 3191, 3259, 3461, 3529, 3559, 3571, 3709, 3821, 4091
Offset: 1

Views

Author

Zerinvary Lajos, Mar 31 2007

Keywords

Examples

			101, 12*101 - 11 = 1201, and 12*101 + 11 = 1223 are all primes.
		

Crossrefs

Subsequence of A157974.

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(12*p-11) and IsPrime(12*p+11)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Range[5000], PrimeQ[ # ] && PrimeQ[12# + 11] && PrimeQ[12# - 11] &]
    Select[Prime[Range[600]],AllTrue[12#+{11,-11},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 12 2016 *)

Extensions

Name corrected by T. D. Noe, Jan 29 2011
Showing 1-5 of 5 results.