cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002559 Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.

Original entry on oeis.org

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, 426389, 499393, 514229, 646018, 925765, 1136689, 1278818
Offset: 1

Views

Author

Keywords

Comments

A004280 gives indices of Fibonacci numbers (A000045) which are also Markoff (or Markov) numbers.
As mentioned by Conway and Guy, all odd-indexed Pell numbers (A001653) also appear in this sequence. The positions of the Fibonacci and Pell numbers in this sequence are given in A158381 and A158384, respectively. - T. D. Noe, Mar 19 2009
Assuming that each solution (x,y,z) is ordered x <= y <= z, the open problem is to prove that each z value occurs only once. There are no counterexamples in the first 1046858 terms, which have z values < Fibonacci(5001) = 6.2763...*10^1044. - T. D. Noe, Mar 19 2009
Zagier shows that there are C log^2 (3x) + O(log x (log log x)^2) Markoff numbers below x, for C = 0.180717.... - Charles R Greathouse IV, Mar 14 2010 [but see Thompson, below]
The odd numbers in this sequence are of the form 4k+1. - Paul Muljadi, Jan 31 2011
All prime divisors of Markov numbers (with exception 2) are of the form 4k+1. - Artur Jasinski, Nov 20 2011
Kaneko extends a parameterization of Markoff numbers, citing Frobenius, and relates it to a conjectured behavior of the elliptic modular j-function at real quadratic numbers. - Jonathan Vos Post, May 06 2012
Riedel (2012) claims a proof of the unicity conjecture: "it will be shown that the largest member of [a Markoff] triple determines the other two uniquely." - Jonathan Sondow, Aug 21 2012
There are 93 terms with each term <= 2*10^9 in the sequence. The number of distinct prime divisors of any of the first 93 terms is less than 6. The second, third, 4th, 5th, 6th, 10th, 11th, 15th, 16th, 18th, 20th, 24th, 25th, 27th, 30th, 36th, 38th, 45th, 48th, 49th, 69th, 79th, 81st, 86th, 91st terms are primes. - Shanzhen Gao, Sep 18 2013
Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers are composite--see A256395. Equivalently, the prime Markoff numbers A178444 have density zero among all Markoff numbers. (It is conjectured that infinitely many Markoff numbers are prime.) - Jonathan Sondow, Apr 30 2015
According to Sarnak on Apr 30 2015, all claims to have proved the unicity conjecture have turned out to be false. - Jonathan Sondow, May 01 2015
The numeric value of C = lim (number of Markoff numbers < x) / log^2(3x) given in Zagier's paper and quoted above suffers from an accidentally omitted digit and rounding errors. The correct value is C = 0.180717104711806... (see A261613 for more digits). - Christopher E. Thompson, Aug 22 2015
Named after the Russian mathematician Andrey Andreyevich Markov (1856-1922). - Amiram Eldar, Jun 10 2021

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 187.
  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 86.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.3, p. 200.
  • Richard K. Guy, Unsolved Problems in Number Theory, D12.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, notes on ch. 24.6 (p. 412)
  • Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
  • Richard A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[ IntegerQ[a], m = Union[ Join[m, {a}]]]; If[ IntegerQ[b], m = Union[ Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 40] (* Robert G. Wilson v, Oct 05 2005 *)
    terms = 40; depth0 = 10; Clear[ft]; ft[n_] := ft[n] = Module[{f}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, {g[[1]], g[[3]], 3*g[[1]]*g[[3]] - g[[2]]}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, {g[[2]], g[[3]], 3*g[[2]]*g[[3]] - g[[1]]}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, terms]&]; ft[n = depth0]; ft[n++]; While[ft[n] != ft[n - 1], n++]; Print["depth = n = ", n]; A002559 = ft[n] (* Jean-François Alcover, Aug 29 2017 *)
    MAX=10^10;
    data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]Xianwen Wang, Aug 22 2021 *)
  • Python
    markov = set[tuple[int, int, int]]
    def MarkovNumbers(len: int = 50, MAX: int = 10**10) -> list[int]:
        cur: markov = {(1, 1, 1), (1, 1, 2), }
        def step(triples: markov) -> markov:
            ret: markov = set()
            for (a, b, c) in triples:
                for x, y, z in [(a, b, c), (b, c, a), (c, a, b)]:
                    t = (x, y, 3 * x * y - z)
                    if max(t) < MAX: ret.add(t)
            return ret
        while True:
            new = step(cur)
            if new == cur: break
            cur = new
        return sorted({n for triple in cur for n in triple})[:len]
    print(MarkovNumbers(len=42))  # Peter Luschny, Aug 10 2025

Extensions

Name clarified by Wolfdieter Lang, Jan 22 2015

A158384 Positions of Pell numbers in the sequence of Markoff numbers (A002559).

Original entry on oeis.org

1, 3, 5, 8, 13, 18, 25, 33, 41, 52, 64, 75, 90, 104, 119, 137, 157, 174, 193, 214, 236, 260, 289, 312, 340, 369, 396, 426, 458, 487, 523, 560, 596, 631, 671, 708, 751, 794, 835, 879, 924, 968, 1019, 1066, 1116, 1165, 1218, 1269, 1322, 1377, 1430, 1488, 1551
Offset: 1

Views

Author

T. D. Noe, Mar 19 2009

Keywords

Comments

Only the odd-indexed Pell numbers (A001653) appear in the Markoff sequence. The n-th term is about 0.5602*n^2.

Crossrefs

Cf. A158381.

A305315 a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.

Original entry on oeis.org

1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a1(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b1(n) = Fibonacci(6*n+1) = A134493(n). These solutions are obtained from the fundamental positive solution [1, 1] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) with determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [11,5] and is given by [a5(n), b5(n)], with a5(n) = A305316(n) and b5(n) = A134497(n) = F(6*n+5), with the Fibonacci numbers F = A000045.
The remaining positive solutions are improper and are obtained by application of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = 4*A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
Via the Cayley-Hamilton theorem the powers of the automorphic matrix A are: A^n = matrix([S(n) - 9*S(n-1), 20*S(n-1)], [4*S(n-1), S(n) - 9*S(n-1)]) with the Chebyshev polynomials S(n-1) = S(n-1, x=18) = A049660(n), n >= 0.
This shows that ordered Markoff (Markov) triples [1, y, m], with 1 <= y <= m, have for m from the union of sets {m1(k)}{k>=0} U {m5(k)}{k>=0) U {m3(k)}_{k>=0)}, with mj(k) = F(6*k+j), for j = 1, 5, and 3, the unique solutions yj(k) = (3*F(6*k+j) - aj(k))/2 < mj(k), namely y1(k) = F(6*k-1) = A134497(k-1) with F(-1) = 1, y5(k) = F(6*k+3) = A134495(k) and y3(k) = F(6*k+1) = A134493. The solutions with the + sign are excluded because they are > mj(k). This trisection of the odd-indexed Fibonacci numbers as m numbers shows again the well known fact that each of them appears as largest member in a Markoff triple if the smallest member is x = 1. The positions of the odd-indexed Fibonacci numbers in the Markoff sequence A002559 are given in A158381. The conjecture in this case is that the odd-indexed Fibonacci numbers appear as largest numbers only in the ordered Markov triples with x = 1. See, e.g., the Aigner reference for the general Frobenius-Markoff conjecture.
Also Lucas numbers that are congruent to 1 mod 4. - Fred Patrick Doty, Aug 03 2020

Examples

			The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation  a^2 - 5*b^2 = -4  begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
		

References

  • Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018

Formula

a(n) = sqrt(5*(F(6*n+1))^2 - 4), with F(6*n+1) = A134493(n), n >= 0.
a(n) = S(n, 18) + 11*S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(0)=1 and a(-1) = -11.
G.f.: (1 + 11*x)/(1 - 18*x + x^2).
a(n) = 2*sinh((6*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
Showing 1-3 of 3 results.