A158522 Dirichlet inverse of number of unitary divisors of n (A034444).
1, -2, -2, 2, -2, 4, -2, -2, 2, 4, -2, -4, -2, 4, 4, 2, -2, -4, -2, -4, 4, 4, -2, 4, 2, 4, -2, -4, -2, -8, -2, -2, 4, 4, 4, 4, -2, 4, 4, 4, -2, -8, -2, -4, -4, 4, -2, -4, 2, -4, 4, -4, -2, 4, 4, 4, 4, 4, -2, 8, -2, 4, -4, 2, 4, -8, -2, -4, 4, -8, -2, -4, -2, 4, -4, -4, 4, -8, -2, -4, 2, 4, -2
Offset: 1
Examples
a(60) = a(2^2*3*5) = [(-1)^2*2]*[(-1)^1*2]*[(-1)^1*2] = 2*(-2)*(-2) = 8.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[LiouvilleLambda[n] 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Mar 07 2015 *)
-
PARI
for(n=1,20, print1((-1)^bigomega(n)* 2^omega(n), ", ")) \\ G. C. Greubel, May 21 2017
Formula
Multiplicative with a(p^e) = 2*(-1)^e, p prime, e>0. a(p^0) = 1.
Dirichlet g.f.: zeta(2s)/(zeta(s))^2. - R. J. Mathar, Apr 02 2011
a(n) = Sum_{d|n} (-1)^Omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024
Comments