cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A300656 Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0

Views

Author

Kolosov Petro, Mar 10 2018

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(2, n, k).
Fifth power can be expressed as row sum of triangle T(n, k).
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
--------------------------------------------------------------------------
k=    0     1     2      3      4      5      6      7     8     9    10
--------------------------------------------------------------------------
n=0:  1;
n=1:  1,    1;
n=2:  1,   31,    1;
n=3:  1,  121,  121,     1;
n=4:  1,  271,  481,   271,     1;
n=5:  1,  481, 1081,  1081,   481,     1;
n=6:  1,  751, 1921,  2431,  1921,   751,     1;
n=7:  1, 1081, 3001,  4321,  4321,  3001,  1081,     1;
n=8:  1, 1471, 4321,  6751,  7681,  6751,  4321,  1471,    1;
n=9:  1, 1921, 5881,  9721, 12001, 12001,  9721,  5881, 1921,    1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431,   1;
		

Crossrefs

Various cases of L(m, n, k): A287326(m=1), This sequence (m=2), A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of A002561.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    [[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
    
  • Maple
    a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
    Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
    f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
  • PARI
    t(n, k) = 30*k^2*(n-k)^2+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */ trianglerows(9)
    
  • Sage
    [[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018

Formula

From Kolosov Petro, Apr 12 2020: (Start)
T(n, k) = 30 * k^2 * (n-k)^2 + 1.
T(n, k) = 30 * A094053(n,k)^2 + 1.
T(n, k) = A158558((n-k) * k).
T(n+2, k) = 3*T(n+1, k) - 3*T(n, k) + T(n-1, k), for n >= k.
Sum_{k=1..n} T(n, k) = A000584(n).
Sum_{k=0..n-1} T(n, k) = A000584(n).
Sum_{k=0..n} T(n, k) = A002561(n).
Sum_{k=1..n-1} T(n, k) = A258807(n).
Sum_{k=1..n-1} T(n, k) = -A024003(n), n > 1.
Sum_{k=1..r} T(n, k) = A316349(2,r,0)*n^0 - A316349(2,r,1)*n^1 + A316349(2,r,2)*n^2. (End)
G.f.: (1 + 26*y + 336*y^2 + 326*y^3 + 31*y^4 + x^2*(1 + 116*y + 486*y^2 + 116*y^3 + y^4) + x*(-2 - 82*y - 882*y^2 - 502*y^3 + 28*y^4))/((-1 + x)^3*(-1 + y)^5). - Stefano Spezia, Oct 30 2018

A158557 a(n) = 225*n^2 + 15.

Original entry on oeis.org

15, 240, 915, 2040, 3615, 5640, 8115, 11040, 14415, 18240, 22515, 27240, 32415, 38040, 44115, 50640, 57615, 65040, 72915, 81240, 90015, 99240, 108915, 119040, 129615, 140640, 152115, 164040, 176415, 189240, 202515, 216240, 230415, 245040, 260115, 275640, 291615
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (30*n^2 + 1)^2 - (225*n^2 + 15)*(2*n)^2 = 1 can be written as A158558(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[15, 240, 915]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {15, 240, 915}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
    225*Range[0,40]^2+15 (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0, 22, print1(225*n^2 + 15", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

G.f.: 15*(1 + 13*x + 16*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(15))*Pi/sqrt(15) + 1)/30.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(15))*Pi/sqrt(15) + 1)/30. (End)
E.g.f.: 15*exp(x)*(1 + 15*x + 15*x^2). - Elmo R. Oliveira, Jan 15 2025

Extensions

Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009

A158672 a(n) = 900*n^2 + 30.

Original entry on oeis.org

30, 930, 3630, 8130, 14430, 22530, 32430, 44130, 57630, 72930, 90030, 108930, 129630, 152130, 176430, 202530, 230430, 260130, 291630, 324930, 360030, 396930, 435630, 476130, 518430, 562530, 608430, 656130, 705630, 756930, 810030, 864930, 921630, 980130, 1040430
Offset: 0

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (60*n^2 + 1)^2 - (900*n^2 + 30)*(2*n)^2 = 1 can be written as A158673(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 930, 3630]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 19 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 930, 3630}, 50] (* Vincenzo Librandi, Feb 19 2012 *)
    900*Range[0,40]^2+30 (* Harvey P. Dale, May 02 2025 *)
  • PARI
    for(n=0, 40, print1(900*n^2 + 30", ")); \\ Vincenzo Librandi, Feb 19 2012

Formula

G.f.: -30*(1 + 28*x + 31*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(30))*Pi/sqrt(30) + 1)/60.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(30))*Pi/sqrt(30) + 1)/60. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 30*exp(x)*(1 + 30*x + 30*x^2).
a(n) = 30*A158558(n). (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009

A283867 Numbers n such that 30*n^2 - 1 and 30*n^2 + 1 are (twin) primes.

Original entry on oeis.org

1, 3, 10, 14, 18, 38, 62, 73, 116, 118, 143, 183, 221, 232, 242, 330, 333, 413, 430, 455, 470, 496, 507, 533, 538, 556, 606, 622, 645, 675, 687, 701, 720, 777, 792, 819, 846, 879, 881, 895, 913, 1000, 1019, 1030, 1092, 1155, 1214, 1238, 1253, 1261, 1313, 1337, 1350, 1407, 1418, 1429, 1431
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2017

Keywords

Examples

			3 is in this sequence because 30*3^2 - 1 = 269 and 30*3^2 + 1 = 271 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsPrime(30*n^2-1) and IsPrime(30*n^2+1)];
    
  • Mathematica
    Select[Range@ 1431, PrimeQ[30*#^2 + 1] && PrimeQ[30*#^2 - 1] &] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    is(n)=isprime(30*n^2-1) && isprime(30*n^2+1) \\ Charles R Greathouse IV, Mar 17 2017
    
  • Python
    from sympy import isprime
    [i for i in range(1, 1501) if isprime(30*i**2 - 1) and isprime(30*i**2 + 1)] # Indranil Ghosh, Mar 17 2017

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 17 2017

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 11 2014

Keywords

Comments

Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.

Examples

			Table begins:
  n/k  2   3   4   5   6   7  ...
   0   1   1   1   1   1   1  ...
   1   1   1   1   1   1   1  ...
   2   3   1   1   1   1   1  ...
   3   5   2   1   1   1   1  ...
   4   9   3   2   1   1   1  ...
   5  13   5   3   2   1   1  ...
   6  19   7   4   2   2   1  ...
   7  25   9   5   3   2   2  ...
   8  33  11   6   4   3   2  ...
   9  41  14   7   5   3   2  ...
  10  51  17   9   6   4   3  ...
  11  61  21  11   7   5   3  ...
  12  73  25  13   8   5   4  ...
  ...
		

Crossrefs

Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
Showing 1-5 of 5 results.