cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A159069 a(n) = A159068(n)/n.

Original entry on oeis.org

1, 2, 3, 6, 7, 23, 19, 66, 95, 255, 187, 1059, 631, 3227, 5243, 11426, 7711, 51887, 27595, 184911, 232887, 606627, 364723, 2807935, 2405183, 8671943, 10368079, 36873651, 18512791, 167268639, 69273667, 496472226, 551130063, 1856103039
Offset: 1

Views

Author

Leroy Quet, Apr 04 2009

Keywords

Examples

			Row 6 of Pascal's triangle is 1,6,15,20,15,6,1. The greatest common divisors of n and each integer from 1 to 6 are gcd(1,6)=1, gcd(2,6)=2, gcd(3,6)=3, gcd(4,6)=2, gcd(5,6)=1, and gcd(6,6)=6. So a(6) = (1/6)*( 6*1 + 15*2 + 20*3 + 15*2 + 6*1 + 1*6) = 138/6 = 23. Note that each term of the sum in parentheses is a multiple of 6, so 138 is a multiple of 6.
		

Crossrefs

Cf. A159068.

Programs

Extensions

Extended by R. J. Mathar, Apr 06 2009

A159458 Numbers m such that m^2 divides A159068(m), where A159068(m) = Sum_{k=1..m} binomial(m,k) * gcd(m,k).

Original entry on oeis.org

1, 2, 3, 11, 33, 309, 665, 1461, 2323, 6789
Offset: 1

Views

Author

Leroy Quet, Apr 12 2009

Keywords

Comments

m divides A159068(m) for all positive integers m.

Crossrefs

Programs

  • PARI
    is(m) = sum(k=1, m, binomial(m, k)*gcd(k, m))%m^2 == 0; \\ Jinyuan Wang, Aug 10 2021

Extensions

4 more terms from R. J. Mathar, Apr 16 2009
a(10)=6789 from Ray Chandler, Jun 19 2009

A159553 a(n) = Sum_{k=0..n} binomial(n,k) * gcd(n,k).

Original entry on oeis.org

2, 6, 12, 28, 40, 144, 140, 536, 864, 2560, 2068, 12720, 8216, 45192, 78660, 182832, 131104, 933984, 524324, 3698240, 4890648, 13345816, 8388652, 67390464, 60129600, 225470544, 279938160, 1032462256, 536870968, 5018059200
Offset: 1

Views

Author

Leroy Quet, Apr 14 2009

Keywords

Comments

For the purpose of this sequence, gcd(n,0) = n, for all positive integers n.
a(n) is a multiple of n, for all nonnegative integers n.

Crossrefs

Programs

  • Maple
    A159553 := proc(n) add(binomial(n, k)*gcd(k, n), k=0..n) ; end: seq(A159553(n),n=1..40) ; # R. J. Mathar, Apr 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k] GCD[n, k], {k, 0, n}], {n, 30}] (* Michael De Vlieger, Oct 30 2017 *)

Formula

a(n) = A159068(n) + n.
a(n) = 2^n * Sum_{d|n} (phi(d)/d) * Sum_{k=1..d} (-1)^(k*n/d)*cos(k*Pi/d)^n.

Extensions

Extended by R. J. Mathar, Apr 29 2009
Ambiguous term a(0) removed by Max Alekseyev, Jan 09 2015

A159555 Numbers m where m^2 divides A159553(m), where A159553(m) = Sum_{k=0..m} binomial(m,k) * gcd(m,k).

Original entry on oeis.org

1, 6, 22, 72, 114, 148, 164, 260, 261, 780, 1078, 1184, 1266, 2952, 4674, 21868
Offset: 1

Views

Author

Leroy Quet, Apr 15 2009

Keywords

Comments

For the purpose of this sequence, gcd(m,0) = m.
No other term up to 15000. - Michel Marcus, Sep 06 2019

Crossrefs

Programs

  • Maple
    A159068 := proc(n) option remember; add(binomial(n, k)*gcd(k, n), k=1..n) ; end: A159553 := proc(n) option remember ; A159068(n)+n; end: isA159555 := proc(n) if A159553(n) mod ( n^2) = 0 then true; else false; fi; end: for n from 1 do if isA159555(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Apr 29 2009
  • PARI
    f(n) = sum(k=0, n, binomial(n,k) * gcd(n,k)); \\ A159553
    isok(n) = !(f(n) % n^2); \\ Michel Marcus, Sep 05 2019

Extensions

Extended by R. J. Mathar, Apr 29 2009
a(14)-a(15) from Ray Chandler, Jun 18 2009
a(16) from Jinyuan Wang, Jul 25 2022

A329969 a(n) = Sum_{k=1..n} Stirling2(n,k) * gcd(n,k).

Original entry on oeis.org

1, 3, 7, 25, 56, 484, 883, 9643, 32497, 344277, 678580, 13364806, 27644449, 582379763, 3257283507, 28924878925, 82864869820, 2320283069804, 5832742205075, 159175049844787, 1283043441049111, 10423261367890565, 44152005855084368, 1678303577387465300, 9478188244330160181
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, k] GCD[n, k], {k, 1, n}]; Table[a[n], {n, 1, 25}]
Showing 1-5 of 5 results.