cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159068 a(n) = Sum_{k=1..n} binomial(n,k) * gcd(k,n).

Original entry on oeis.org

1, 4, 9, 24, 35, 138, 133, 528, 855, 2550, 2057, 12708, 8203, 45178, 78645, 182816, 131087, 933966, 524305, 3698220, 4890627, 13345794, 8388629, 67390440, 60129575, 225470518, 279938133, 1032462228, 536870939, 5018059170
Offset: 1

Views

Author

Leroy Quet, Apr 04 2009

Keywords

Comments

Each term of the sum a(n) is divisible by n, so a(n) is a multiple of n for all positive integers n.

Examples

			Row 6 of Pascal's triangle is: 1,6,15,20,15,6,1. The greatest common divisors of n and each integer from 1 to 6 are: GCD(1,6)=1, GCD(2,6)=2, GCD(3,6)=3, GCD(4,6)=2, GCD(5,6)=1, and GCD(6,6)=6. So a(6) = 6*1 + 15*2 + 20*3 + 15*2 + 6*1 + 1*6 = 138. Note that each term of the sum is a multiple of 6, so 138 is a multiple of 6.
		

Crossrefs

Cf. A159069.

Programs

  • Maple
    A159068 := proc(n) add(binomial(n,k)*gcd(k,n),k=1..n) ; end:
    seq(A159068(n),n=1..80) ; # R. J. Mathar, Apr 06 2009
  • Mathematica
    Table[Sum[Binomial[n, k] GCD[k, n], {k, n}], {n, 30}] (* Michael De Vlieger, Aug 29 2017 *)
  • PARI
    a(n) = sum(k=1, n,  binomial(n,k) * gcd(k,n)); \\ Michel Marcus, Aug 30 2017

Formula

a(n) = 2^n * Sum_{d|n} (phi(d)/d) Sum_{k=1..d} (-1)^(k*n/d)*cos(k*Pi/d)^n - n.

Extensions

Formula corrected by Max Alekseyev, Jan 09 2015

A159554 a(n) = A159553(n)/n.

Original entry on oeis.org

2, 3, 4, 7, 8, 24, 20, 67, 96, 256, 188, 1060, 632, 3228, 5244, 11427, 7712, 51888, 27596, 184912, 232888, 606628, 364724, 2807936, 2405184, 8671944, 10368080, 36873652, 18512792, 167268640, 69273668, 496472227, 551130064, 1856103040
Offset: 1

Views

Author

Leroy Quet, Apr 14 2009

Keywords

Comments

a(n) = A159069(n) + 1.

Crossrefs

Extensions

Extended by Ray Chandler, Jun 18 2009

A159458 Numbers m such that m^2 divides A159068(m), where A159068(m) = Sum_{k=1..m} binomial(m,k) * gcd(m,k).

Original entry on oeis.org

1, 2, 3, 11, 33, 309, 665, 1461, 2323, 6789
Offset: 1

Views

Author

Leroy Quet, Apr 12 2009

Keywords

Comments

m divides A159068(m) for all positive integers m.

Crossrefs

Programs

  • PARI
    is(m) = sum(k=1, m, binomial(m, k)*gcd(k, m))%m^2 == 0; \\ Jinyuan Wang, Aug 10 2021

Extensions

4 more terms from R. J. Mathar, Apr 16 2009
a(10)=6789 from Ray Chandler, Jun 19 2009

A178623 Triangle T(n,m) read by rows: T(n,0)= prime(n); T(n,m)=1 if m>=1.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29
Offset: 0

Views

Author

Paul Curtz, May 31 2010

Keywords

Comments

The sequence reflects a conjecture on the denominator of inverse Bernoulli polynomials in A178340: if the row index is one less than one of the primes in A008578, the row of denominators starts with that prime and contains 1's in the remaining entries.
[Row sums in A178252 are A159069(n+1), unless there is a common factor in numerator and denominator. The row sum over columns with index of the same parity as the row index in the table of fractions of the [x^m] B^{-1}(n,x) in A178252 are: 1, 1, 1/3+1=4/3, 1+1=2, 1/5+2+1=16/5, 1+10/3+1=16/3, 1/7+3+5+1=64/7, 16, 256/9, 256/5, 1024/11, 512/3, 496/13, ... =A084623(n+1)/A000265(n+1).]

Examples

			1;
2,1;
3,1,1;
5,1,1,1,1;
7,1,1,1,1,1,1;
11,1,1,1,1,1,1,1,1,1,1;
13,1,1,1,1,1,1,1,1,1,1,1,1;
17,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
19,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
23,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
		

Crossrefs

Cf. A076274 (row sums).

Formula

T(n,0) = A008578(n+1). T(n,m) =1, 1<=m<=A008578(n+1)-1.
Showing 1-4 of 4 results.