cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A159678 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2-equation problem 7*n(j) + 1 = a(j)*a(j) and 9*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Original entry on oeis.org

1, 17, 271, 4319, 68833, 1097009, 17483311, 278635967, 4440692161, 70772438609, 1127918325583, 17975920770719, 286486814005921, 4565813103324017, 72766522839178351, 1159698552323529599, 18482410314337295233, 294558866477073194129, 4694459453318833810831
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

The sequence a(j) is A157456, the sequence n(j) is A159679, the sequence b(j) the sequence given here.
Numbers k such that 7*k^2 + 2 is a square. - Colin Barker, Mar 17 2014

Crossrefs

Programs

  • Magma
    [n le 2 select 17^(n-1) else 16*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 03 2018
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
    n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq(simplify(ChebyshevU(n-1,8) + ChebyshevU(n-2,8)), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    Rest[CoefficientList[Series[x (1+x)/(1-16x+x^2),{x,0,30}],x]] (* or *) LinearRecurrence[{16,-1},{1,17},30] (* Harvey P. Dale, Dec 25 2011 *)
  • PARI
    Vec(x*(1+x)/(1-16*x+x^2) + O(x^30)) \\ Michel Marcus, Jan 03 2016
    
  • PARI
    a(n) = round((-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/(2*sqrt(7))) \\ Colin Barker, Jul 25 2016
    
  • Sage
    [(lucas_number2(n,16,1)-lucas_number2(n-1,16,1))/14 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

The b(j) recurrence (this sequence) is b(1)=1, b(2)=17, b(t+2) = 16*b(t+1) - b(t).
From R. J. Mathar, Oct 31 2011: (Start)
G.f.: x*(1+x) / ( 1-16*x+x^2 ).
a(n) = A077412(n-1) + A077412(n-2). (End)
a(n) = 16*a(n-1) - a(n-2), with a(1)=1, a(2)=17. - Harvey P. Dale, Dec 25 2011
a(n) = ( (3-sqrt(7))*(8+3*sqrt(7))^n - (3+sqrt(7))*(8-3*sqrt(7))^n )/(2*sqrt(7)). - Colin Barker, Jul 25 2016

Extensions

More terms from Zerinvary Lajos, Nov 10 2009
Showing 1-2 of 2 results.