A159741 a(n) = 8*(2^n - 1).
8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1
Examples
From _R. J. Mathar_, Apr 22 2009: (Start) The base table is .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .2..2....2....2....2....2....2....2....2....2....2....2....2....2 .0..2....3....4....4....4....4....4....4....4....4....4....4....4 .0..2....5....7....8....8....8....8....8....8....8....8....8....8 .0..2....8...13...15...16...16...16...16...16...16...16...16...16 .0..2...13...24...29...31...32...32...32...32...32...32...32...32 .0..2...21...44...56...61...63...64...64...64...64...64...64...64 .0..2...34...81..108..120..125..127..128..128..128..128..128..128 .0..2...55..149..208..236..248..253..255..256..256..256..256..256 .0..2...89..274..401..464..492..504..509..511..512..512..512..512 .0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024 .0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048 .0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096 Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[8*(2^n -1): n in [1..50]]; // G. C. Greubel, May 22 2018
-
Maple
T := proc(n,m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i,m),i=1..m) ; fi: end: A159741 := proc(n) T(n+4,n+1) ; end: seq(A159741(n),n=1..40) ; # R. J. Mathar, Apr 22 2009
-
Mathematica
Table[8(2^n-1),{n,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *) LinearRecurrence[{3,-2},{8,24},30] (* Harvey P. Dale, Jan 01 2019 *)
-
PARI
a(n)=8*(2^n-1) \\ Charles R Greathouse IV, Sep 24 2015
Formula
From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
Extensions
More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009
Comments