A160457 a(n) = n^2 - 2*n + 2.
2, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810
Offset: 0
Links
- Yoshio Sano, The competition numbers of regular polyhedra, arXiv:0905.1763 [math.CO], 2009.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n^2-2*n+2, {n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *) LinearRecurrence[{3,-3,1},{2,1,2},60] (* Harvey P. Dale, Mar 29 2015 *)
-
PARI
vector(100,n,n--;n^2 - 2*n + 2)
Formula
a(n) = a(n-1) + 2*n - 3 (with a(0)=2). - Vincenzo Librandi, Dec 03 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (2 - 5*x + 5*x^2)/(1-x)^3.
a(n) = A002522(n-1). - Michel Marcus, Feb 03 2016
E.g.f.: exp(x)*(2 - x + x^2). - Elmo R. Oliveira, Nov 13 2024
Extensions
More terms from Vincenzo Librandi, Nov 08 2009
Sequence corrected by Joerg Arndt, Dec 03 2010
Comments