cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229829 Numbers coprime to 15.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119
Offset: 1

Views

Author

Gary Detlefs, Oct 01 2013

Keywords

Comments

A001651 INTERSECT A047201.
a(n) - 15*floor((n-1)/8) - 2*((n-1) mod 8) has period 8, repeating [1,0,0,1,0,1,1,0].
Numbers whose odd part is 7-rough: products of terms of A007775 and powers of 2 (terms of A000079). - Peter Munn, Aug 04 2020
The asymptotic density of this sequence is 8/15. - Amiram Eldar, Oct 18 2020

Crossrefs

Lists of numbers coprime to other semiprimes: A007310 (6), A045572 (10), A162699 (14), A160545 (21), A235933 (35).
Subsequence of: A001651, A047201.
Subsequences: A000079, A007775.

Programs

  • Magma
    [n: n in [1..120] | IsOne(GCD(n,15))]; // Bruno Berselli, Oct 01 2013
    
  • Maple
    for n from 1 to 500 do if n mod 3<>0 and n mod 5<>0 then print(n) fi od
  • Mathematica
    Select[Range[120], GCD[#, 15] == 1 &] (* or *) t = 70; CoefficientList[Series[(1 + x + 2 x^2 + 3 x^3 + x^4 + 3 x^5 + 2 x^6 + x^7 + x^8)/((1 - x)^2 (1 + x) (1 + x^2) (1 + x^4)) , {x, 0, t}], x] (* Bruno Berselli, Oct 01 2013 *)
    Select[Range[120],CoprimeQ[#,15]&] (* Harvey P. Dale, Oct 31 2013 *)
  • Sage
    [i for i in range(120) if gcd(i, 15) == 1] # Bruno Berselli, Oct 01 2013

Formula

a(n+8) = a(n) + 15.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor(2*phi*(f(n+1)+2)) -2*floor(phi*(f(n+1)+2)), where f(n) = (n-1) mod 8 and phi=(1+sqrt(5))/2.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor((2*f(n)+5)/5) -floor((f(n)+2)/3), where f(n) = (n-1) mod 8.
From Bruno Berselli, Oct 01 2013: (Start)
G.f.: x*(1 +x +2*x^2 +3*x^3 +x^4 +3*x^5 +2*x^6 +x^7 +x^8) / ((1-x)^2*(1+x)*(1+x^2)*(1+x^4)). -
a(n) = a(n-1) +a(n-8) -a(n-9) for n>9. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(7 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021

A236206 Numbers not divisible by 3, 5 or 7.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 16, 17, 19, 22, 23, 26, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 121, 122, 124, 127, 128, 131, 134, 136
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 20 2014

Keywords

Comments

Numbers whose odd part is 11-rough: products of terms of A008364 and powers of 2 (terms of A000079). - Peter Munn, Aug 03 2020
Numbers coprime to 105. The asymptotic density of this sequence is 16/35. - Amiram Eldar, Oct 23 2020

Crossrefs

Subsequences: A000079, A008364.
Intersection of any 2 of A160545, A229829, A235933.
Other sequences with similar definitions: A007775, A236217.

Programs

  • Mathematica
    Select[Range[300], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 7] > 0 &] (* T. D. Noe, Feb 05 2014 *)
    Select[Range[300],Or@@Divisible[#,{3,5,7}]==False&] (* Harvey P. Dale, Mar 13 2014 *)
    Select[Range[150], CoprimeQ[105, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n) = a(n-1) + a(n-48) - a(n-49). - Amiram Eldar, Oct 23 2020

A306999 Numbers m such that 1 < gcd(m, 21) < m and m does not divide 21^e for e >= 0.

Original entry on oeis.org

6, 12, 14, 15, 18, 24, 28, 30, 33, 35, 36, 39, 42, 45, 48, 51, 54, 56, 57, 60, 66, 69, 70, 72, 75, 77, 78, 84, 87, 90, 91, 93, 96, 98, 99, 102, 105, 108, 111, 112, 114, 117, 119, 120, 123, 126, 129, 132, 133, 135, 138, 140, 141, 144, 150, 153, 154, 156, 159, 161
Offset: 1

Views

Author

Michael De Vlieger, Aug 22 2019

Keywords

Comments

Complement of the union of A003594 and A160545.
Analogous to A081062 and A105115 regarding terms 1 and 2 of A120944, respectively. This sequence applies to A120944(5) = 21.

Examples

			6 is in the sequence since gcd(6, 21) = 3 and 6 does not divide 21^e with integer e >= 0.
5 is not in the sequence since it is coprime to 21.
3 is not in the sequence since 3 | 21.
9 is not in the sequence since 9 | 21^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local g;
      g:= igcd(n,21);
      if g = 1 or g = n then return false fi;
      3^padic:-ordp(n,3)*7^padic:-ordp(n,7) < n
    end proc:
    select(filter, [$1..200]); # Robert Israel, Aug 28 2019
  • Mathematica
    With[{nn = 161, k = 21}, Select[Range@ nn, And[1 < GCD[#, k] < #, PowerMod[k, Floor@ Log2@ nn, #] != 0] &]]

A229973 Numbers coprime to 39.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 53, 55, 56, 58, 59, 61, 62, 64, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 97, 98, 100, 101, 103, 106
Offset: 1

Views

Author

Gary Detlefs, Oct 04 2013

Keywords

Comments

Numbers not divisible by 3 or 13.
For n from 1 to 24, a(n) mod 39-n - floor(11*n/25)-2*floor(n/8) has a period of 24, consisting of all zeros except a -2 at indices 8, 16, and 24.
The asymptotic density of this sequence is 8/13. - Amiram Eldar, Oct 23 2020

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do if n mod 3<>0 and n mod 13<>0 then print(n) fi od
  • Mathematica
    CoefficientList[Series[(x^22 + x^20 + x^18 + x^16 + 2 x^14 - x^12 + 3 x^11 - x^10 + 2 x^8 + x^6 + x^4 + x^2 + 1)/((x - 1)^2 (x + 1) (x^2 - x + 1) (x^2 + 1) (x^4 - x^2 + 1) (x^4 + 1) (x^8 - x^4 + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Oct 08 2013 *)
    Select[Range[100], CoprimeQ[39, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n+24) = a(n) + 39.
a(n) = 39*floor((n-1)/24) + f(n) + floor(11*f(n)/25) + 2*floor(f(n)/8) - 2*floor(((n-1)mod 8)/7) + 40*floor(f(n-1)/23), where f(n) = n mod 24.
G.f.: x*(x^22+x^20+x^18+x^16+2*x^14-x^12+3*x^11-x^10+2*x^8+x^6+x^4+x^2+1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+1)*(x^4-x^2+1)*(x^4+1)*(x^8-x^4+1)). - Colin Barker, Oct 07 2013

Extensions

More terms from Colin Barker, Oct 07 2013
a(34) corrected by Vincenzo Librandi, Oct 08 2013
Showing 1-4 of 4 results.