cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A019433 Continued fraction for tan(1/10).

Original entry on oeis.org

0, 9, 1, 28, 1, 48, 1, 68, 1, 88, 1, 108, 1, 128, 1, 148, 1, 168, 1, 188, 1, 208, 1, 228, 1, 248, 1, 268, 1, 288, 1, 308, 1, 328, 1, 348, 1, 368, 1, 388, 1, 408, 1, 428, 1, 448, 1, 468, 1, 488, 1, 508, 1, 528, 1, 548, 1, 568, 1, 588, 1, 608, 1, 628, 1, 648, 1, 668, 1, 688, 1, 708, 1, 728
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Oct 04 2023: (Start)
Related simple continued fractions expansions (see my comments in A019425):
tan(1/(10*k)) = [0; 10*k - 1, 1, 30*k - 2, 1, 50*k - 2, 1, 70*k - 2, 1, 90*k - 2, 1, ...] for k >= 1.
If d is a divisor of 10 with d*d' = 10 then the simple continued fraction expansion of d*tan(1/10) begins [0; d' - 1, 1, 30*d - 2, 1, 5*d' - 2, 1, 70*d - 2, 1, 9*d' - 2, 1, 110*d - 2, 1, 13*d' - 2, ...], while the simple continued fraction expansion of (1/d)*tan(1/10) begins [ 0; 10*d - 1, 1, 3*d'- 2, 1, 50*d - 2, 1, 7*d' - 2, 1, 90*d - 2, 1, 11*d' - 2, 1, 130*d - 2, ...]. (End)

Examples

			0.10033467208545054505808004... = 0 + 1/(9 + 1/(1 + 1/(28 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 14 2009
		

Crossrefs

Cf. A161019 (decimal expansion), A019425 through A019432.

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{0,9,1,28,1,48},80] (* or *) Join[{0,9},Riffle[NestList[20+#&,28,40],1,{1,-1,2}]] (* Harvey P. Dale, Jul 23 2023 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 99000); x=contfrac(tan(1/10)); for (n=0, 20000, write("b019433.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
    
  • PARI
    Vec(x*(x^4-x^3+10*x^2+x+9)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013

Formula

From Colin Barker, Sep 08 2013: (Start)
a(n) = -1/2+(3*(-1)^n)/2+5*n-5*(-1)^n*n for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+10*x^2+x+9) / ((x-1)^2*(x+1)^2). (End)

A161011 Decimal expansion of tan(1/2).

Original entry on oeis.org

5, 4, 6, 3, 0, 2, 4, 8, 9, 8, 4, 3, 7, 9, 0, 5, 1, 3, 2, 5, 5, 1, 7, 9, 4, 6, 5, 7, 8, 0, 2, 8, 5, 3, 8, 3, 2, 9, 7, 5, 5, 1, 7, 2, 0, 1, 7, 9, 7, 9, 1, 2, 4, 6, 1, 6, 4, 0, 9, 1, 3, 8, 5, 9, 3, 2, 9, 0, 7, 5, 1, 0, 5, 1, 8, 0, 2, 5, 8, 1, 5, 7, 1, 5, 1, 8, 0, 6, 4, 8, 2, 7, 0, 6, 5, 6, 2, 1, 8, 5, 8, 9, 1, 0, 4
Offset: 0

Views

Author

Harry J. Smith, Jun 13 2009

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.546302489843790513255179465780285383297551720179791246164091385932907...
		

Crossrefs

Cf. A019425 (continued fraction). Cf. A049471, A161011 through A161019.

Programs

  • Mathematica
    RealDigits[N[Tan[1/2],6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)
  • PARI
    default(realprecision, 20080); x=10*tan(1/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b161011.txt", n, " ", d));

Formula

From Peter Bala, Nov 17 2019: (Start)
Related simple continued fraction expansions:
tan(1/2) = [0; 1, 1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, ...]. See A019425.
2*tan(1/2) = [1, 10, 1, 3, 1, 26, 1, 7, 1, 42, 1, 11, 1, 58, 1, 15, 1, 74, 1, 19, 1, 90, ...]
(1/2)*tan(1/2) = [0; 3, 1, 1, 1, 18, 1, 5, 1, 34, 1, 9, 1, 50, 1, 13, 1, 66, 1, 17, 1, 82, ...].
tan(1/2)/(1 - tan(1/2)) = [1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, 24, ...]
2*tan(1/2)/(1 - tan(1/2)) = [2, 2, 2, 4, 2, 6, 2, 8, 2, 10, 2, 12, ...]
4*tan(1/2)/(1 - tan(1/2)) = [4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, ...]. (End)
Showing 1-2 of 2 results.