A161168 a(n) = 2^n + 4^n.
2, 6, 20, 72, 272, 1056, 4160, 16512, 65792, 262656, 1049600, 4196352, 16781312, 67117056, 268451840, 1073774592, 4295032832, 17180000256, 68719738880, 274878431232, 1099512676352, 4398048608256, 17592190238720, 70368752566272
Offset: 0
Links
- Iain Fox, Table of n, a(n) for n = 0..1660
- Eric Weisstein's World of Mathematics, Planar Embedding.
- Eric Weisstein's World of Mathematics, Triangular Snake Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Magma
[ 2^n+4^n: n in [0..25] ];
-
Maple
A161168:=n->2^n+4^n: seq(A161168(n), n=0..40); # Wesley Ivan Hurt, Jul 24 2017
-
Mathematica
a[n_]:=4^n+2^n; Array[a,24] (* Frank M Jackson, Dec 28 2017 *)
-
PARI
a(n)=2^n+4^n \\ Charles R Greathouse IV, Oct 07 2015
-
PARI
first(n) = Vec(2*(1 - 3*x)/((1 - 2*x)*(1 - 4*x)) + O(x^n)) \\ Iain Fox, Dec 28 2017
-
Sage
[2^n + 4^n for n in range(0,25)]
-
Sage
[sigma(4,n)-1for n in range(0,25)]
Formula
a(n) = 6*a(n-1) - 8*a(n-2); a(0)=2, a(1)=6. - Vincenzo Librandi, Dec 27 2010
G.f.: -2*(3*x-1) / ((2*x-1)*(4*x-1)). - Colin Barker, Mar 19 2013
E.g.f.: e^(2*x) + e^(4*x). - Iain Fox, Dec 28 2017
a(n) = 2*A007582(n). - R. J. Mathar, Feb 26 2018
Comments