A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3.
1, 3, 5, 15, 41, 91, 173, 295, 465, 691, 981, 1343, 1785, 2315, 2941, 3671, 4513, 5475, 6565, 7791, 9161, 10683, 12365, 14215, 16241, 18451, 20853, 23455, 26265, 29291, 32541, 36023, 39745, 43715, 47941, 52431, 57193, 62235, 67565, 73191, 79121
Offset: 0
Examples
Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula: 1 3 5 15 2 2 10 0 8 8
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(4*n^3 - 12*n^2 + 14*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
-
Maple
A161703:=n->(4*n^3 - 12*n^2 + 14*n + 3)/3: seq(A161703(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017
-
Mathematica
CoefficientList[Series[(1 - x - x^2 + 9*x^3)/(1 - x)^4, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *) LinearRecurrence[{4,-6,4,-1},{1,3,5,15},50] (* Harvey P. Dale, Oct 04 2024 *)
-
PARI
a(n)=n*(4*n^2-12*n+14)/3+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3).
G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012
Comments