A161711 a(n) = (-4*n^3 + 27*n^2 - 20*n + 3)/3.
1, 2, 13, 26, 33, 26, -3, -62, -159, -302, -499, -758, -1087, -1494, -1987, -2574, -3263, -4062, -4979, -6022, -7199, -8518, -9987, -11614, -13407, -15374, -17523, -19862, -22399, -25142, -28099, -31278, -34687, -38334, -42227, -46374, -50783
Offset: 0
Examples
Differences of divisors of 26 to compute the coefficients of their interpolating polynomial, see formula: 1 2 13 26 1 11 13 10 2 -8
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- R. Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(-4*n^3 + 27*n^2 - 20*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,2,13,26},40] (* Harvey P. Dale, Jul 02 2017 *)
-
PARI
x='x+O('x^50); Vec((1-2*x+11*x^2-18*x^3)/(1-x)^4) \\ G. C. Greubel, Jul 16 2017
Formula
a(n) = C(n,0) + C(n,1) + 10*C(n,2) - 8*C(n,3).
G.f.: (1-2*x+11*x^2-18*x^3)/(1-x)^4. - Bruno Berselli, Jul 17 2011
Comments