A161733 Number of reduced words of length n in the Weyl group B_9.
1, 9, 44, 156, 449, 1113, 2463, 4983, 9372, 16588, 27886, 44846, 69387, 103763, 150538, 212538, 292779, 394371, 520399, 673783, 857121, 1072521, 1321430, 1604470, 1921291, 2270451, 2649332, 3054100, 3479715, 3919995, 4367735
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..81
Crossrefs
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..9]])/(1-t)^9)); // G. C. Greubel, Oct 25 2018 -
Maple
seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..9),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
-
Mathematica
CoefficientList[Series[(1 - x^2) (1 -x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) / (1 - x)^9, {x, 0, 81}], x] (* Vincenzo Librandi, Aug 22 2016 *)
-
PARI
t='t+O('t^40); Vec(prod(k=1,9,1-t^(2*k))/(1-t)^9) \\ G. C. Greubel, Oct 25 2018
Formula
G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Comments