cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A008137 Coordination sequence T1 for Zeolite Code LTA and RHO.

Original entry on oeis.org

1, 4, 9, 17, 28, 42, 60, 81, 105, 132, 162, 196, 233, 273, 316, 362, 412, 465, 521, 580, 642, 708, 777, 849, 924, 1002, 1084, 1169, 1257, 1348, 1442, 1540, 1641, 1745, 1852, 1962, 2076, 2193, 2313, 2436, 2562, 2692, 2825, 2961, 3100, 3242, 3388, 3537, 3689
Offset: 0

Views

Author

Keywords

Comments

Also, growth series for the affine Coxeter (or Weyl) groups B_3. - N. J. A. Sloane, Jan 11 2016
Also, coordination sequence for "rho" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #25 and 27.
  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.
For partial sums see A299276.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Maple
    (1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5));
    seq(coeff(series(%,x,n+1),x,n), n=0..48);

Formula

a(5*m+k) = 40*m^2 + 16*k*m + one of 5 numbers depending on k, 0 <= k < 5 (N. J. A. Sloane).
G.f.: (1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5)). This can also be written as (x+1)^3*(x^2+1)*(x^2-x+1)/((1-x)^3*(x^4+x^3+x^2+x+1)). - N. J. A. Sloane, Feb 10 2018
a(n) = 12/5 - 0^n + (8/5)*n^2 - (1/25)*(5+sqrt(5))*cos(2*Pi*n/5) - (1/25)*(5-sqrt(5))*cos(4*Pi*n/5). - Eric Simon Jacob, Feb 12 2023

A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.
Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - Mikhail Gaichenkov, Feb 08 2023

Examples

			The row sums form A000165, the even double factorial numbers:
  [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
Triangle begins:
 1;
 1, 1;
 1, 2,  2,  2,  1;
 1, 3,  5,  7,  8,  8,   7,   5,   3,   1;
 1, 4,  9, 16, 24, 32,  39,  44,  46,  44,  39,  32,  24,  16,   9,   4,   1;
 ...
		

Crossrefs

Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).
The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858.

Programs

  • Mathematica
    t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
    for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
    
  • PARI
    row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ Andrew Howroyd, Mar 21 2025

A008576 Coordination sequence for planar net 4.8.8.

Original entry on oeis.org

1, 3, 5, 8, 11, 13, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133
Offset: 0

Views

Author

Keywords

Comments

Also, growth series for the affine Coxeter (or Weyl) groups B_2. - N. J. A. Sloane, Jan 11 2016

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
For partial sums see A008577.
The growth series for the finite Coxeter (or Weyl) groups B_3 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Maple
    if n mod 3 = 0 then 8*n/3 elif n mod 3 = 1 then 8*(n-1)/3+3 else 8*(n-2)/3+5 fi;
  • Mathematica
    cspn[n_]:=Module[{c=Mod[n,3]},Which[c==0,(8n)/3,c==1,(8(n-1))/3+3,True,(8(n-2))/3+5]]; Join[{1},Array[cspn,50]] (* or *) Join[{1}, LinearRecurrence[ {1,0,1,-1},{3,5,8,11},50]] (* Harvey P. Dale, Nov 24 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,1,0,1]^n*[1;3;5;8])[1,1] \\ Charles R Greathouse IV, Apr 08 2016

Formula

G.f.: ((1+x)^2*(1+x^2))/((1-x)^2*(1+x+x^2)). - Ralf Stephan, Apr 24 2004
a(0)=1, a(1)=3, a(2)=5, a(3)=8, a(4)=11, a(n) = a(n-1) + a(n-3) - a(n-4). - Harvey P. Dale, Nov 24 2011
a(0)=1; thereafter a(3k)=8k, a(3k+1)=8k+3, a(3k+2)=8k+5. - N. J. A. Sloane, Dec 22 2015
The above g.f. and recurrence were originally empirical observations, but I now have a proof (details will be added later). This also justifies the Maple and Mma programs and the b-file. - N. J. A. Sloane, Dec 22 2015
Sum of alternate terms of A042965 (numbers not congruent to 2 mod 4), such that A042965(n) = A042965(n+1) + A042965(n-1). - Gary W. Adamson, Sep 12 2007
a(n) = (2/9)*(12*n + (3/2)*A102283(n)) for n > 0. - Stefano Spezia, Aug 07 2022

A161696 Number of reduced words of length n in the Weyl group B_3.

Original entry on oeis.org

1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

If the zeros are ignored, this is the coordination sequence for the truncated cuboctahedron (see the Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=10; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..3]])/(1-t)^3)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..3),x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,3}] /(1-x)^3, {x,0,9}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^10); Vec(prod(k=1,3,1-t^(2*k))/(1-t)^3) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161699 Number of reduced words of length n in the Weyl group B_6.

Original entry on oeis.org

1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919, 2254, 2565, 2832, 3037, 3166, 3210, 3166, 3037, 2832, 2565, 2254, 1919, 1580, 1255, 958, 699, 484, 315, 190, 104, 50, 20, 6, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..6]])/(1-t)^6)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..6),x,n+1), x, n), n = 0 .. 36); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) / (1 - x)^6, {x, 0, 50}], x]  (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,6,1-t^(2*k))/(1-t)^6) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161716 Number of reduced words of length n in the Weyl group B_7.

Original entry on oeis.org

1, 7, 27, 77, 181, 371, 686, 1170, 1869, 2827, 4082, 5662, 7581, 9835, 12399, 15225, 18242, 21358, 24464, 27440, 30162, 32510, 34376, 35672, 36336, 36336, 35672, 34376, 32510, 30162, 27440, 24464, 21358, 18242, 15225, 12399, 9835, 7581, 5662
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..7]])/(1-t)^7)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..7),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,7,1-t^(2*k))/(1-t)^7) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161717 Number of reduced words of length n in the Weyl group B_8.

Original entry on oeis.org

1, 8, 35, 112, 293, 664, 1350, 2520, 4389, 7216, 11298, 16960, 24541, 34376, 46775, 62000, 80241, 101592, 126029, 153392, 183373, 215512, 249202, 283704, 318171, 351680, 383270, 411984, 436913, 457240, 472281, 481520, 484636, 481520, 472281
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..8]])/(1-t)^8)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..8),x,65), x, n), n = 0 .. 64); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) / (1 - x)^8, {x, 0, 70}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,8,1-t^(2*k))/(1-t)^8) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161755 Number of reduced words of length n in the Weyl group B_10.

Original entry on oeis.org

1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63064, 107910, 177297, 281060, 431598, 644136, 936915, 1331286, 1851685, 2525468, 3382588, 4455100, 5776486, 7380800, 9301642, 11570980, 14217849, 17266966, 20737309, 24640716, 28980565
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..10]])/(1-t)^10)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..10),x,101), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) / (1 - x)^10, {x, 0, 100}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,10,1-t^(2*k))/(1-t)^10) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161776 Number of reduced words of length n in the Weyl group B_11.

Original entry on oeis.org

1, 11, 65, 275, 934, 2706, 6941, 16159, 34749, 69927, 132991, 240901, 418198, 699258, 1130856, 1774992, 2711907, 4043193, 5894878, 8420346, 11802934, 16258034, 22034519, 29415309, 38716897, 50287667, 64504857, 81770051
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..11]])/(1-t)^11)); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..11),x,122), x, n), n = 0 .. 121); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[((1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) (1 - x^22)) / (1 - x)^11, {x, 0, 121}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,11,1-t^(2*k))/(1-t)^11) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161858 Number of reduced words of length n in the Weyl group B_12.

Original entry on oeis.org

1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204, 442891395, 570023312, 726112969
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

Row n=12 of A128084.
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..12),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)),{k,1,12}]/(1-x)^12,{x,0,50}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,12,1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Showing 1-10 of 21 results. Next