cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161796 Primes with at least one digit appearing exactly five times in the decimal expansion.

Original entry on oeis.org

101111, 111119, 111121, 111191, 111211, 111611, 112111, 113111, 131111, 199999, 311111, 313333, 323333, 331333, 333233, 333323, 333331, 333337, 333383, 333433, 333533, 334333, 343333, 353333, 444443, 444449, 511111, 555557, 599999, 611111
Offset: 1

Views

Author

Ki Punches, Jun 19 2009

Keywords

Comments

The sequence is probably infinite.

Crossrefs

Programs

  • Maple
    isdgctm := proc(n,d) local dgs,a,i ; dgs := convert(n,base,10) ; a := [seq(0,j=0..9)] ;
    for i in dgs do a := subsop(i+1=op(i+1,a)+1,a) ; od: if convert(a,set) intersect {d} <> {} then true; else false; fi; end:
    for n from 1 to 100000 do p := ithprime(n) ; if isdgctm(p,5) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jun 21 2009

Extensions

Edited and corrected by R. J. Mathar, Jun 21 2009

A165508 Numbers k such that 10^k + 111 is prime.

Original entry on oeis.org

2, 4, 184, 460, 784, 3248, 5194, 92386, 156428, 228208
Offset: 1

Views

Author

Rick L. Shepherd, Sep 21 2009

Keywords

Comments

Terms must be congruent to 2 or 4 mod 6. Other than the first term, which produces 10^2 + 111 = 211, these terms produce primes whose decimal representation is 1 111 concatenated. These are only known to be highly probable primes for 184 and beyond. No more terms up to 15000.
a(8) > 55000. - Tyler NeSmith, Jul 10 2021
The corresponding primes have digit sum 4 (A062339). - Jeppe Stig Nielsen, Feb 10 2023
a(9) > 10^5. - Jeppe Stig Nielsen, Feb 11 2023
a(11) > 6.6*10^5. - Boyan Hu, Nov 14 2024

Examples

			As 10111 = 10^4 + 111 is a prime, 4 is a term.
		

Crossrefs

Programs

Extensions

a(8) from Jeppe Stig Nielsen, Feb 10 2023
a(9)-a(10) from Boyan Hu, Oct 23 2024

A257937 Primes p such that one digit appears exactly six times together with a single different digit.

Original entry on oeis.org

1111151, 1111181, 1111211, 1111711, 1114111, 1117111, 1171111, 2999999, 3233333, 3331333, 3333133, 3333233, 3333313, 3333331, 3333373, 3333383, 3333433, 3337333, 3353333, 3433333, 3733333, 4999999, 7477777, 7577777, 7727777, 7772777, 7774777, 7777727, 7778777, 7877777, 9899999, 9929999, 9999299, 9999929, 9999991
Offset: 1

Views

Author

K. D. Bajpai, Jul 13 2015

Keywords

Comments

All the terms are congruent to 1 or 2 (mod 3).
In no term does the digit 0, 2, 4, 5, 6, or 8 appear six times.

Examples

			a(1) = 1111151 has exactly six 1's together with a single digit 5.
a(8) = 2999999 has exactly six 9's together with a single digit 2.
		

Crossrefs

Programs

  • Maple
    sort(select(isprime, [seq(seq(seq(d*1111111 + (a-d)*10^k, k=0..6), a={$1..9} minus {d}),d=1..9)])); # Robert Israel, Jul 13 2015
  • Mathematica
    kQ[n_]:= Module[{d=Select[DigitCount[n], # > 0 &]},Length[d] == 2 && Min[d] == 1 && Max[d] == 6]; Select[Table[Prime[n], {n, 1000000}], kQ]
    Select[Prime[Range[80000, 400000]], MemberQ[DigitCount[#], 6] &] (* Vincenzo Librandi, Jul 14 2015 *)

A161848 Primes with at least one digit appearing exactly three times in the decimal expansion.

Original entry on oeis.org

1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 2333, 2777, 2999, 3313, 3323, 3331, 3343, 3373, 3433, 3533, 3733, 3833, 4111, 4441, 4447, 4999, 5333, 5557, 6661, 7177, 7333, 7477, 7577, 7717, 7727, 7757, 7877, 8111, 8887, 8999, 9199, 9929
Offset: 1

Views

Author

Ki Punches, Jun 20 2009

Keywords

Comments

Sequence is probably infinite.

Examples

			2333, 3313, 3833 all repeat some digit 3 three times.
		

Crossrefs

Programs

  • Maple
    isdgctm := proc(n,d) local dgs,a,i ; dgs := convert(n,base,10) ; a := [seq(0,j=0..9)] ;
    for i in dgs do a := subsop(i+1=op(i+1,a)+1,a) ; od: if convert(a,set) intersect {d} <> {} then true; else false; fi; end:
    for n from 1 to 2000 do p := ithprime(n) ; if isdgctm(p,3) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jun 21 2009

Extensions

Edited and corrected by R. J. Mathar, Jun 21 2009
Showing 1-4 of 4 results.