A161885 Smallest k such that n^5 = a_1^5+...+a_k^5 and all a_i are positive integers less than n.
32, 26, 19, 18, 14, 12, 9, 11, 9, 13, 6, 12, 8, 10, 9, 8, 10, 10, 9, 10, 10, 7, 6, 9, 7, 9, 8, 9, 6, 9, 6, 8, 7, 7, 6, 8, 7, 8, 7, 7, 7, 9, 8, 9, 7, 8, 6, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 6, 8, 8, 6, 7, 7, 7, 7, 5, 7, 7, 7, 7, 8, 6, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 7, 7, 7, 5, 7, 6, 7, 7, 6, 7
Offset: 2
Keywords
Examples
a(29) = 9 since 29^5 = 5^5 + 9^5 + 10^5 + 10^5 + 10^5 + 15^5 + 15^5 + 17^5 + 28^5, and there is no sum of less than 9 fifth powers equal to 26^5; a(30) = 6 since 30^5 = 5^5 + 10^5 + 11^5 + 16^5 + 19^5 + 29^5; a(72) = 5 since 72^5 = 19^5 + 43^5 + 46^5 + 47^5 + 67^5. - _M. F. Hasler_, Dec 17 2014
Links
- Giovanni Resta, Table of n, a(n) for n = 2..400
- Jean-Charles Meyrignac, Computing Minimal Equal Sums Of Like Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation 5th Powers
Programs
-
PARI
a(n,verbose=0,m=5)={N=n^m;for(k=3,32,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))} \\ M. F. Hasler, Dec 17 2014
-
PARI
a(n)={ my(N=n^5,k=3); while(1, my(v=vector(k-1,i,[sqrtnint(max((N-(k-i)*(n-1)^5-1)\i,0),5)+1,sqrtnint((N-i+1)\(k-i+1),5)])); forvec(x=v, my(s=N-sum(i=1,#x,x[i]^5)); if(s>0 && ispower(s,5), return(k)) , 1 ); k++ ); }; \\ Charles R Greathouse IV, Dec 18 2014
Extensions
a(43)-a(83) from M. F. Hasler, Dec 17 2014
a(77) corrected by Charles R Greathouse IV, Dec 19 2014
a(84)-a(100) from Charles R Greathouse IV, Dec 19 2014
Comments