A252485 Least index k for which n occurs in A161885, or 0 if n never occurs.
144, 73, 12, 23, 14, 8, 15, 9, 7, 11, 6
Offset: 4
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
2^2 = 1^2 + 1^2 + 1^2 + 1^2, so a(2)=4. 3^2 = 2^2 + 2^2 + 1^2, so a(3)=3.
f[n_, k_] := Select[PowersRepresentations[n^2, k, 2], AllTrue[#, 0<#Jean-François Alcover, Oct 03 2020 *)
A161882(n)={vecmin(factor(n)[,1]%4)==1 && return(2); if(n==1<M. F. Hasler, Dec 17 2014
f[n_, k_] := Select[PowersRepresentations[n^3, k, 3], AllTrue[#, 0<#Jean-François Alcover, Oct 03 2020 *)
A161883(n,verbose=0,m=3)={N=n^m;for(k=3,99,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!if(verbose,print1("/*"n" "v"*/"))&&return(k),1))} \\ M. F. Hasler, Dec 17 2014
a(n, verbose=0, m=4)={N=n^m; for(k=3, 99, forvec(v=vector(k-1, i, [1, n\sqrtn((k+1-i)*0.99999, m)]), ispower(N-sum(i=1, k-1, v[i]^m), m, &K)&&K>0&&!if(verbose,print1("/*"n" "v"*/"))&&return(k), 1))} \\ M. F. Hasler, Dec 17 2014
M:= 10^8: R:= Vector(M, 74, datatype=integer[4]): for p from 1 to floor(M^(1/6)) do p6:= p^6; if p > 1 then A[p]:= R[p6] fi; R[p6]:= 1; for j from p6+1 to M do R[j]:= min(R[j], 1+R[j - p6]); od od: F:= proc(n, k, ub) local lb, m, bestyet, res; if ub <= 0 then return -1 fi; if n <= M then if n = 0 then return 0 elif R[n] > ub then return -1 else return R[n] fi fi; lb:= floor(n/k^6); if lb > ub then return -1 fi; bestyet:= ub; for m from lb to 0 by -1 do res:= procname(n-m*k^6, k-1, bestyet-m); if res >= 0 then bestyet:= res+m; fi od: return bestyet end proc: for n from floor(M^(1/6))+1 to 50 do A[n]:= F(n^6, n-1, 73) od: seq(A[n], n=2..50); # Robert Israel, Aug 17 2015
a[n_] := Module[{k}, For[k = 7, True, k++, If[IntegerPartitions[n^6, {k}, Range[n-1]^6] != {}, Print[n, " ", k]; Return[k]]]]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Jul 29 2023 *)
a(n,verbose=0,m=6)={N=n^m;for(k=3,64,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))}
from itertools import count from sympy.solvers.diophantine.diophantine import power_representation def A252486(n): m = n**6 for k in count(2): try: next(power_representation(m,6,k)) except: continue return k # Chai Wah Wu, Jun 25 2024
M:= 10^8: R:= Vector(M,144, datatype=integer[4]): for p from 1 to floor(M^(1/7)) do p7:= p^7; if p > 1 then A[p]:= R[p7] fi; R[p7]:= 1; for j from p7+1 to M do R[j]:= min(R[j],1+R[j - p7]); od od: F:= proc(n,k,ub) local lb, m, bestyet, res; if ub <= 0 then return -1 fi; if n <= M then if n = 0 then return 0 elif R[n] > ub then return -1 else return R[n] fi fi; lb:= floor(n/k^7); if lb > ub then return -1 fi; bestyet:= ub; for m from lb to 0 by -1 do res:= procname(n-m*k^7, k-1, bestyet-m); if res >= 0 then bestyet:= res+m; fi od: return bestyet end proc: for n from floor(M^(1/7))+1 to 50 do A[n]:= F(n^7,n-1,144) od: seq(A[n],n=2..50); # Robert Israel, Aug 17 2015
a(n,verbose=0,m=7)={N=n^m;for(k=3,999,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))}
Comments