cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A333508 Central coefficients of polynomials related to Weyl groups and defined in A162206.

Original entry on oeis.org

1, 2, 6, 30, 212, 1924, 21280, 277788, 4180544, 71259048, 1356909620, 28547946524, 657640647850, 16463431995932, 445040788849348, 12919664598624526, 400880326987609778, 13239976828676088316, 463742797180250495450, 17169969365226035615744
Offset: 1

Views

Author

Jean-François Alcover, Mar 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[(1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n, {x, 0, n(n-1)/2}];
    Array[a, 20]

A161435 Number of reduced words of length n in the Weyl group A_3 (or D_3).

Original entry on oeis.org

1, 3, 5, 6, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

a(n) is also the number of vertices of a truncated octahedron (the Voronoi cell for the lattice A_3*) at edge distance n from a given vertex. See also row 4 of the triangle in A008302. - N. J. A. Sloane, Oct 12 2015, corrected Aug 26 2016.
If the zeros are omitted, this is the coordination sequence for the truncated octahedron (see Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with Magma using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^3) (1 - x^4) / (1 - x)^3, {x, 0, 20}], x] (* Vincenzo Librandi, Aug 23 2016 *)

Formula

G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A162212 Number of reduced words of length n in the Weyl group D_9.

Original entry on oeis.org

1, 9, 44, 156, 449, 1113, 2463, 4983, 9372, 16587, 27877, 44802, 69231, 103314, 149425, 210075, 287796, 384999, 503812, 645906, 812319, 1003290, 1218116, 1455045, 1711216, 1982655, 2264333, 2550288, 2833809, 3107676, 3364445, 3596763, 3797695, 3961044, 4081645
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    A162212g := proc(m::integer)
        (1-x^m)/(1-x) ;
    end proc:
    A162212 := proc(n,k)
        g := A162212g(k);
        for m from 2 to 2*k-2 by 2 do
            g := g*A162212g(m) ;
        end do:
        g := expand(g) ;
        coeftayl(g,x=0,n) ;
    end proc:
    seq( A162212(n,9),n=0..30) ; # R. J. Mathar, Jan 19 2016
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    n = 9;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

A162248 Number of reduced words of length n in the Weyl group D_10.

Original entry on oeis.org

1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63063, 107900, 177243, 280850, 430939, 642364, 932680, 1322068, 1833095, 2490290, 3319525, 4347200, 5599243, 7099950, 8870703, 10928616, 13285169, 15944898, 18904214, 22150426, 25661040, 29403398, 33334708, 37402498
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

Extensions

Entry revised by N. J. A. Sloane, Jan 17 2016
Data corrected by Jean-François Alcover, Mar 25 2020

A162288 Number of reduced words of length n in the Weyl group D_11.

Original entry on oeis.org

1, 11, 65, 275, 934, 2706, 6941, 16159, 34749, 69927, 132991, 240900, 418187, 699193, 1130581, 1774058, 2709201, 4036252, 5878719, 8385597, 11733007, 16125043, 21793619, 28997122, 38017704, 49157086, 62730799, 79060850, 98466873, 121255904, 147711001, 178079011
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)
    x =.; n = 11; CoefficientList[ Product[1 - x^(2 k), {k, 1, n - 1}] (1 - x^n) /(1 - x)^n // Expand, x] (* Michael Somos, Aug 06 2021 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

Extensions

Entry revised by N. J. A. Sloane, Jan 17 2016

A162297 Number of reduced words of length n in the Weyl group D_12.

Original entry on oeis.org

1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923857, 1623104, 2753895, 4528612, 7239585, 11280072, 17168009, 25572196, 37340381, 53528488, 75430016, 104604424, 142903123, 192491532, 255865533, 335860592, 435651810, 558743240, 708944960
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    n = 12;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

Extensions

Entry revised by N. J. A. Sloane, Jan 17 2016

A162300 Number of reduced words of length n in the Weyl group D_13.

Original entry on oeis.org

1, 13, 90, 442, 1728, 5720, 16653, 43745, 105586, 237354, 502113, 1007773, 1931631, 3554746, 6308706, 10837593, 18078112, 29360890, 46535840, 72124195, 109499325, 163097740, 238660747, 343506072, 486827392, 680018170, 937014482, 1274649714
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    n = 13;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

A162301 Number of reduced words of length n in the Weyl group D_14.

Original entry on oeis.org

1, 14, 104, 546, 2274, 7994, 24647, 68392, 173978, 411332, 913445, 1921218, 3852849, 7407596, 13716314, 24553984, 42632448, 71994624, 118534456, 190669584, 300196001, 463355582, 702148097, 1045918928, 1533251980, 2214194008, 3152831605, 4430235278, 6147776297
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    n = 14;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

A162321 Number of reduced words of length n in the Weyl group D_15.

Original entry on oeis.org

1, 15, 119, 665, 2939, 10933, 35580, 103972, 277950, 689282, 1602727, 3523945, 7376794, 14784390, 28500705, 53054702, 95687240, 167682306, 286218490, 476893794, 777106448, 1240505775, 1942759458, 2988915740, 4522669833, 6737871614, 9892634850, 14326424875
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    n = 15;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

A162327 Number of reduced words of length n in the Weyl group D_16.

Original entry on oeis.org

1, 16, 135, 800, 3739, 14672, 50252, 154224, 432174, 1121456, 2724183, 6248128, 13624922, 28409312, 56910017, 109964720, 205651974, 373334384, 659553420, 1136449488, 1913563930, 3154094352, 5096922202, 8086011920, 12609093085, 19347878144, 29242434212, 43572711936
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
Showing 1-10 of 49 results. Next