A162551 a(n) = 2 * C(2*n,n-1).
0, 2, 8, 30, 112, 420, 1584, 6006, 22880, 87516, 335920, 1293292, 4992288, 19315400, 74884320, 290845350, 1131445440, 4407922860, 17194993200, 67156001220, 262564816800, 1027583214840, 4025232800160, 15780742227900, 61915399071552
Offset: 0
Keywords
References
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016
- Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks, Discrete Math, 312(24) (2012), 3649-3655. MR2979494. See Th. 1.1, case 2. - _N. J. A. Sloane_, Nov 07 2012
Programs
-
Haskell
a162551 n = a051601 (2 * n) n -- Reinhard Zumkeller, Aug 05 2013
-
Magma
[2*n*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
nn=25;Drop[CoefficientList[Series[(1-2x)/(1-4x)^(1/2),{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 23 2013 *) Table[2Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Oct 26 2016 *)
-
PARI
a(n) = 2*binomial(2*n,n-1) \\ Charles R Greathouse IV, Oct 23 2023
Formula
a(n) = 2*A001791(n). - R. J. Mathar, Jul 15 2009
E.g.f.: exp(2*x)*2*(BesselI(1,2*x)). - Peter Luschny, Aug 26 2012
O.g.f.: ((1 - 2*x)/(1 - 4*x)^(1/2) - 1)/x - Geoffrey Critzer, Feb 23 2013
E.g.f.: 2*Q(0) - 2, where Q(k) = 1 - 2*x/(k + 1 - (k + 1)*(2*k + 3)/(2*k + 3 - (k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
Comments