cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163250 a(n) = A000045(n+6) - (n^2 + 4*n + 8).

Original entry on oeis.org

0, 0, 1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855
Offset: 0

Views

Author

Jonathan Vos Post, Jul 23 2009

Keywords

Comments

Given on p. 2 of Freixas, and proved as Theorem 3.2.
Partial sums of A001891. - Bill McEachen, Jan 20 2023
Original name was: The number of nonisomorphic complete simple games with n voters of two different types. - Charles R Greathouse IV, Jan 22 2023

Crossrefs

Programs

  • GAP
    List([0..35],n->Fibonacci(n+6)-(n^2+4*n+8)); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [Fibonacci(n+6)-(n^2+4*n+8): n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
    
  • Maple
    with(numtheory): seq(coeff(series(x^2*(1+x)/((x^2+x-1)*(x-1)^3),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    LinearRecurrence[{4,-5,1,2,-1}, {0,0,1,5,15}, 40] (* or *) Table[ Fibonacci[n+6] -(n^2+4*n+8), {n,0,40}] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0,0], Vec(x^2*(1+x)/((1-x-x^2)*(1-x)^3) + O(x^40))) \\ G. C. Greubel, Dec 12 2016
    
  • Sage
    f=fibonacci; [f(n+6) -(n^2+4*n+8) for n in (0..40)] # G. C. Greubel, Jul 06 2019

Formula

a(n) = F(n+6) - (n^2 + 4*n + 8), where F(n) are the Fibonacci numbers.
From R. J. Mathar, Jul 27 2009: (Start)
a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5).
G.f.: x^2*(1+x)/((1-x-x^2)*(1-x)^3). (End)
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} i^2 * C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A053808(n-2) for n >= 2. - Georg Fischer, Oct 28 2018
a(n) = (n-1)^2 + a(n-1) + a(n-2), n>2 (conjectured). - Bill McEachen, Jan 20 2023

Extensions

More terms from R. J. Mathar, Jul 27 2009
New name using given formula from Joerg Arndt, Jan 21 2023