cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163271 Numerators of fractions in a 'zero-transform' approximation of sqrt(2) by means of a(n) = (a(n-1) + c)/(a(n-1) + 1) with c=2 and a(1)=0.

Original entry on oeis.org

0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, 4756, 11482, 27720, 66922, 161564, 390050, 941664, 2273378, 5488420, 13250218, 31988856, 77227930, 186444716, 450117362, 1086679440, 2623476242, 6333631924, 15290740090, 36915112104, 89120964298, 215157040700
Offset: 1

Views

Author

Mark Dols, Jul 24 2009

Keywords

Comments

Twice the Pell numbers; for denominators see A001333 (numerators of the approximation of sqrt(2) for a(1) = 1).
Row sums of the triangle A128966. - Reinhard Zumkeller, Jul 20 2013
Because a(n+1)/A001333(n) approximates sqrt(2) and a(n) = 2*A001333(n) - a(n+1), we get that a(n)/A001333(n) approximates 2 - sqrt(2). - Danny Rorabaugh, Mar 14 2015
Number of weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n and for which {1,...,n} has exactly one minimal and one maximal element for the weak ordering R. - J. Devillet, Sep 28 2017

Crossrefs

Cf. A000129 (Pell numbers), A001333 (denominators), A052542.
Cf. A293004.

Programs

  • GAP
    a := [0, 2];; for n in [3..10^2] do a[n] := 2*a[n-1] + a[n-2]; od; A163271:=a; # Muniru A Asiru, Oct 08 2017
  • Haskell
    a163271 = sum . a128966_row . (subtract 1)
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A163271:=gfun:-rectoproc({a(n) = 2 * a(n-1) + a(n-2), a(1) = 0, a(2) = 2}, a(n), remember):  map(A163271, [$1..100]);  # Muniru A Asiru, Oct 08 2017
  • Mathematica
    CoefficientList[Series[2*t^2/(1-2*t - t^2), {t,0,50}], t] (* or *) LinearRecurrence[{2,1},{0,2},50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*t^2/(1-2*t - t^2) + O(t^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

a(n) = A052542(n-1), n > 1.
G.f.: x + x^2/(2*G(0)-x) where G(k) = 1 - (k+1)/(1 - x/(x +(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = 2*a(n-1) + a(n-2). - Jacob Antony, Jun 07 2013
a(n) = b(n) - b(n-1) = 2b(n-1) - a(n-1) where b(n) = A001333(n). - Danny Rorabaugh, Mar 14 2015
G.f.: 2*t^2/(1 - 2*t - t^2). - G. C. Greubel, Dec 12 2016
a(n) = 2*A000129(n-1) (see the first comment). - J. Devillet, Sep 28 2017