cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163109 a(n) = phi(tau(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 6, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 20 2009

Keywords

Examples

			a(16) = a(2^(5-1)) = 5-1 = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[DivisorSigma[0, n]], {n, 1, 80}] (* Carl Najafi, Aug 15 2011 *)
  • PARI
    a(n) = eulerphi(numdiv(n)); \\ Michel Marcus, Aug 22 2015

Formula

a(n) = A000010(A000005(n)). - Charles R Greathouse IV, Aug 11 2009
a(1) = 1, a(p) = 1 for p = primes (A000040), a(p*q) = 2 for p*q = product of two distinct primes (A006881), a(p*q*...*z) = 2^(k-1) for p*q*...*z = product of k (k > 2) distinct primes p, q, ..., z (A120944), a(p^(q-1)) = q - 1 for p, q = primes (A000040).

Extensions

More terms from Carl Najafi, Aug 15 2011
Further extended by Antti Karttunen, Jul 23 2017

A163386 Primes p such that 4(p-4)-1 and 4(p-4)+1 are twin primes.

Original entry on oeis.org

5, 7, 19, 31, 61, 109, 211, 277, 367, 409, 421, 487, 571, 829, 967, 1009, 1069, 1201, 1237, 1279, 1471, 1579, 1669, 1699, 1741, 1831, 2161, 2521, 2539, 2719, 2797, 3067, 4021, 4051, 4177, 4261, 4327, 4441, 4519, 4567, 4639, 4789, 4861, 5197, 5407, 5527
Offset: 1

Views

Author

Keywords

Comments

In other words, primes p such that 4*(p-4) is member of A014574. [Omar E. Pol, Aug 05 2009]

Examples

			4*(5-4)=4, 4*(7-4)=12, 4*(19-4)=60,...
		

Crossrefs

Cf. A163385.
Cf. A014574, A163387, A163378. [Omar E. Pol, Aug 05 2009]

Programs

  • Mathematica
    f1[n_]:=If[PrimeQ[n-1]&&PrimeQ[n+1],True,False]; f2[n_]:=If[f1[n]&&PrimeQ[n/4+4],True,False]; lst={};Do[If[f2[n],AppendTo[lst,n/4+4]],{n,8!}];lst
    Select[Prime[Range[3,750]],And@@PrimeQ[4(#-4)+{1,-1}]&] (* Harvey P. Dale, Jan 24 2014 *)

Extensions

Edited by Omar E. Pol, Aug 06 2009
Showing 1-2 of 2 results.