cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A290085 a(n) = A289626(A000005(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 5, 1, 2, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 2, 4, 2, 5, 1, 2, 2, 5, 1, 5, 1, 2, 2, 2, 2, 5, 1, 3, 3, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 2, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 5, 5, 2, 1, 5, 1, 5, 2, 3, 1, 5, 2, 2, 2, 2, 2, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2017

Keywords

Crossrefs

Formula

a(n) = A289626(A000005(n)).

A163378 a(n) = sigma(phi(tau(n))).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 1, 7, 3, 3, 3, 3, 1, 7, 1, 3, 3, 3, 3, 12, 1, 3, 3, 7, 1, 7, 1, 3, 3, 3, 1, 7, 3, 3, 3, 3, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 3, 12, 3, 7, 1, 3, 3, 7, 1, 7, 1, 3, 3, 3, 3, 7, 1, 7, 7, 3, 1, 7, 3, 3
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1,EulerPhi[DivisorSigma[0,n]]],{n,100}] (* Harvey P. Dale, Jun 21 2016 *)
  • PARI
    vector(100, n, sigma(eulerphi(numdiv(n)))) \\ G. C. Greubel, Dec 20 2016

Formula

Extensions

More terms from Harvey P. Dale, Jun 21 2016

A173326 Numbers k such that phi(tau(k)) = sopf(k).

Original entry on oeis.org

4, 8, 32, 1344, 2016, 2025, 2376, 3375, 3528, 4032, 4224, 4704, 4752, 5292, 5376, 5625, 6084, 6804, 7128, 9408, 9504, 10125, 10206, 10935, 12100, 12348, 12672, 16875, 16896, 20412, 21384, 23814, 26136, 28512, 29952, 30375, 31944, 32832, 42768, 46464, 48114
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Examples

			4 is in the sequence because tau(4) = 3, phi(3) = 2 and sopf(4) = 2.
8 is in the sequence because tau(8) = 4, phi(4) = 2 and sopf(8) = 2.
		

Crossrefs

Cf. A000005 (tau), A000010 (phi), A008472 (sopf).

Programs

  • Maple
    A008472 := proc(n) add(p,p= numtheory[factorset](n)) ; end proc:
    A163109 := proc(n) numtheory[phi](numtheory[tau](n)) ; end proc:
    for n from 1 to 40000 do if A008472(n) = A163109(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Sep 02 2011
  • Mathematica
    Select[Range[2,50000],EulerPhi[DivisorSigma[0,#]]==Total[ Transpose[ FactorInteger[#]][[1]]]&] (* Harvey P. Dale, Nov 15 2013 *)

Formula

{k: A163109(k) = A008472(k)}.

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010

A385122 a(n) = d(phi(n)) - phi(d(n)) where d(n) = A000005(n) is the number of divisors and phi(n) = A000010(n) is the Euler totient function.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 1, 5, 2, 2, 0, 4, 2, 5, 2, 4, 2, 3, 0, 4, 4, 4, 4, 5, 0, 7, 3, 4, 3, 6, 0, 8, 4, 6, 1, 7, 2, 7, 4, 6, 2, 3, 1, 6, 4, 4, 6, 5, 2, 6, 4, 7, 4, 3, 1, 11, 6, 7, 0, 8, 2, 7, 4, 4, 4, 7, 4, 11, 7, 6, 7, 10, 4, 7, 2, 4, 6, 3, 4, 5, 6
Offset: 1

Views

Author

Sean A. Irvine, Jun 18 2025

Keywords

Comments

First negative value is a(120) = -2.

Crossrefs

Programs

  • Mathematica
    A385122[n_] := DivisorSigma[0, EulerPhi[n]] - EulerPhi[DivisorSigma[0, n]];
    Array[A385122, 100] (* Paolo Xausa, Jun 19 2025 *)
  • PARI
    a(n) = numdiv(eulerphi(n)) - eulerphi(numdiv(n)); \\ Michel Marcus, Jun 19 2025

Formula

a(n) = A000005(A000010(n)) - A000010(A000005(n)).
a(n) = A062821(n) - A163109(n).

A163377 a(n) = tau(phi(tau(n))).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 4, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 3, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, EulerPhi[DivisorSigma[0, Range[100]]]] (* G. C. Greubel, Dec 20 2016 *)
  • PARI
    vector(100, n, numdiv(eulerphi(numdiv(n)))) \\ G. C. Greubel, Dec 20 2016

Formula

A163379 a(n) = phi(phi(tau(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[EulerPhi[DivisorSigma[0, Range[100]]]] (* G. C. Greubel, Dec 20 2016 *)
  • PARI
    vector(100, n, eulerphi(eulerphi(numdiv(n)))) \\ G. C. Greubel, Dec 20 2016

Formula

Extensions

More terms added by G. C. Greubel, Dec 20 2016

A163367 a(n) = phi(tau(sigma(n))).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 4, 1, 2, 2, 2, 4, 2, 6, 4, 4, 1, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 2, 4, 2, 4, 8, 4, 8, 4, 4, 4, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 4, 4, 2, 4, 2, 4, 4, 8, 4, 4, 2, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A163367:=n->phi(tau(sigma(n))): seq(A163367(n), n=1..150); # Wesley Ivan Hurt, Dec 19 2016
  • Mathematica
    Table[EulerPhi[DivisorSigma[0, DivisorSigma[1, n]]], {n, 100}] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    vector(50, n, eulerphi(numdiv(sigma(n)))) \\ G. C. Greubel, Dec 19 2016

Formula

A163376 a(n) = phi(tau(phi(n))).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 6, 2, 2, 4, 4, 4, 6, 2, 4, 2, 4, 2, 2, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 2, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A163376:=n->phi(tau(phi(n))): seq(A163376(n), n=1..200); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    EulerPhi[DivisorSigma[0, EulerPhi[Range[100]]]] (* G. C. Greubel, Dec 20 2016 *)
  • PARI
    vector(100, n, eulerphi(numdiv(eulerphi(n)))) \\ G. C. Greubel, Dec 20 2016

Formula

A173328 Numbers k such that phi(tau(k)) = tau(sopf(k)).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 18, 20, 22, 25, 27, 30, 32, 34, 44, 49, 50, 58, 60, 68, 70, 82, 90, 102, 104, 105, 116, 118, 121, 125, 135, 140, 142, 150, 152, 164, 169, 174, 182, 189, 190, 195, 202, 204, 208, 214, 231, 236, 238, 242, 243, 246, 248, 252, 274, 284, 285, 286
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

Sopf(n) = A008472(n) is the sum of the distinct primes dividing n, tau(n) = A000005(n) is the number of divisors of n, phi = A000010 is Euler's totient function.

Examples

			4 is in the sequence because tau(4) = 3, phi(3) = 2, sopf(4) = 2 and tau(2) = 2.
6 is in the sequence because tau(6) = 4, phi(6) = 2, sopf(6) = 5 and tau(5) = 2.
		

Crossrefs

Cf. A000005 (tau), A000010 (phi), A008472 (sopfr), A163109.

Programs

  • Maple
    isA173328 := proc(n)
            numtheory[phi](numtheory[tau](n)) = numtheory[tau](A008472(n)) ;
    end proc:
    for n from 1 to 300 do
            if isA173328(n) then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Nov 07 2011
  • Mathematica
    Select[Range[2,300],EulerPhi[DivisorSigma[0,#]]==DivisorSigma[0, Total[ FactorInteger[#][[All,1]]]]&] (* Harvey P. Dale, May 30 2017 *)
  • PARI
    isok(k) = if(k == 1, 0, my(f=factor(k)); eulerphi(numdiv(f)) == numdiv(vecsum(f[,1]))); \\ Amiram Eldar, Feb 08 2025

Formula

{k : A163109(k) = tau(A008472(k))}.

A173617 Numbers k such that phi(tau(k)) = rad(k).

Original entry on oeis.org

1, 4, 8, 32, 36, 192, 288, 768, 972, 1458, 5120, 13122, 326592, 19531250, 22588608, 46137344, 171532242, 110000000000, 132799613957120, 1618481116086272, 506590324238281250, 8358680908399640576, 162805498773679522226642, 198263834416799184651812864, 7852841179377049820122874642432, 4299870835974154129876817272635392
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(n) is the product of the primes dividing n (A007947), tau(n) is the number of divisors of n (A000005), and phi(n) is Euler totient function (A000010).
Numbers k such that A163109(k) = A007947(k).
a(18) > 10^10. - Donovan Johnson, Jul 27 2011
From Amiram Eldar, Feb 08 2025: (Start)
1 is the only odd term in this sequence.
The number of terms with any given number of divisors is finite.
There are no terms whose number of divisors d equals 2 or in A049195, or when omega(phi(d)) > bigomega(d), where omega = A001221 and bigomega = A001222.
If p is a Sophie Germain prime (A005384), then 2*p^(2*p) is a term. (End)

Examples

			8 is a term since tau(8) = 4, phi(4) = 2 and rad(8) = 2.
13122 is a term  tau(13122) = 18, phi(18) = 6 and rad(13122) = 6.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if phi(tau(n)) = t2 then print (n): else fi : od :
  • Mathematica
    (* First program: see the links section. *)
    (* Second program: *)
    q[k_] := k == 1 || EvenQ[k] && Module[{f = FactorInteger[k]}, EulerPhi[Times @@ (f[[;;,2]] + 1)] == Times @@ f[[;;, 1]]]; Select[Range[400000], q] (* Amiram Eldar, Feb 08 2025 *)
  • PARI
    isok(k) = if(k == 1, 1, if(k % 2, 0, my(f=factor(k)); eulerphi(numdiv(f)) == vecprod(f[,1]))); \\ Amiram Eldar, Feb 08 2025

Extensions

a(14)-a(17) from Donovan Johnson, Jul 27 2011
a(18)-a(26) from Amiram Eldar, Feb 08 2025
Showing 1-10 of 12 results. Next