A162652 Primes p such that there are positive integers m and n and a prime q such that p = m^2+m-q = n^2+n+q.
Keywords
Examples
7 = 1^2+1+5 = 3^2+3-5.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..77
Crossrefs
Programs
-
Maple
isA002378 := proc(n) if n >= 0 then if issqr(4*n+1) then RETURN(type( sqrt(4*n+1),'odd')) ; else false; fi; else false; fi; end: # primes p such there is a prime q
A162652 := proc(p) local j,q; if isprime(p) then for j from 1 do q := ithprime(j) ; if q >= p then break; fi; if isA002378(p+q) and isA002378(p-q) then RETURN(true) ; fi; od: false ; else false; fi; end: for n from 1 to 4000 do if isA162652(ithprime(n)) then printf("%d,",ithprime(n)) ; fi; od; # R. J. Mathar, Jul 17 2009
-
Mathematica
sol[p_] := m^2 + m - p /. Solve[m>0 && n>0 && 2p == m + m^2 + n + n^2, {m, n}, Integers]; Reap[For[p = 2, p < 10^6, p = NextPrime[p], qsel = Select[sol[p], PrimeQ]; If[qsel != {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Mar 25 2020 *)
Comments