A164051 a(n) = 2^(2n) + 2^(n-1).
5, 18, 68, 264, 1040, 4128, 16448, 65664, 262400, 1049088, 4195328, 16779264, 67112960, 268443648, 1073758208, 4295000064, 17179934720, 68719607808, 274878169088, 1099512152064, 4398047559680, 17592188141568, 70368748371968, 281474985099264
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Mathematica
Table[2^(2 n) + 2^(n - 1), {n, 24}] (* or *) Rest@ CoefficientList[Series[-x (-5 + 12 x)/((4 x - 1) (2 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Jun 21 2016 *) LinearRecurrence[{6,-8},{5,18},30] (* Harvey P. Dale, Jan 07 2023 *)
-
PARI
x='x+O('x^50); Vec(x*(5-12*x)/((1-4*x)*(1-2*x))) \\ G. C. Greubel, Sep 08 2017
-
PARI
a(n) = 2^(2*n) + 2^(n-1); \\ Michel Marcus, Sep 09 2017
Formula
a(n) = A001445(2n+1).
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: x*(5-12*x)/((1-4*x)*(1-2*x)).
E.g.f.: (-3 + exp(2*x) + 2*exp(4*x))/2. - Ilya Gutkovskiy, Jun 21 2016
Extensions
Edited and extended by R. J. Mathar, Aug 11 2009
Comments