cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164367 a(n) = A164051(n) in base 2.

Original entry on oeis.org

101, 10010, 1000100, 100001000, 10000010000, 1000000100000, 100000001000000, 10000000010000000, 1000000000100000000, 100000000001000000000
Offset: 1

Views

Author

Jaroslav Krizek, Aug 14 2009

Keywords

Programs

  • Mathematica
    Table[FromDigits@ IntegerDigits[2^(2 n) + 2^(n - 1), 2], {n, 12}] (* or *)
    Rest@ CoefficientList[Series[x (101 - 1100 x)/((1 - 10 x) (1 - 100 x)), {x, 0, 12}], x] (* Michael De Vlieger, Jun 21 2016 *)
  • PARI
    x='x+O('x^50); Vec(x*(101 - 1100*x)/((1 - 10*x)*(1 - 100*x))) \\ G. C. Greubel, Sep 15 2017

Formula

a(n) = 10^(2*n) + 10^(n-1). The digits from the left to the right: number 1, n times 0, number 1, and (n-1) times 0.
From Chai Wah Wu, Jun 20 2016: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2) for n > 2.
G.f.: x*(101 - 1100*x)/((1 - 10*x)*(1 - 100*x)). (End)
E.g.f.: (-11 + exp(10*x) + 10*exp(100*x))/10. - Ilya Gutkovskiy, Jun 21 2016

Extensions

Edited by Charles R Greathouse IV, Oct 12 2009

A001445 a(n) = (2^n + 2^[ n/2 ] )/2.

Original entry on oeis.org

3, 5, 10, 18, 36, 68, 136, 264, 528, 1040, 2080, 4128, 8256, 16448, 32896, 65664, 131328, 262400, 524800, 1049088, 2098176, 4195328, 8390656, 16779264, 33558528, 67112960, 134225920, 268443648
Offset: 2

Views

Author

Keywords

Comments

a(n) is union of A007582(n-1) and A164051(n). - Jaroslav Krizek, Aug 14 2009
Number of binary strings of length n+1, not counting strings which are the reversal, the complement, or the reversal of the complement of each other as different. - Christian Barrientos, Jun 06 2025

Examples

			G.f. = 3*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 36*x^6 + 68*x^7 + 136*x^8 + ...
		

Crossrefs

Programs

  • Maple
    f := n->(2^n+2^floor(n/2))/2;
  • Mathematica
    Table[(2^n + 2^(Floor[n/2]))/2, {n, 2, 50}] (* G. C. Greubel, Sep 08 2017 *)
    LinearRecurrence[{2,2,-4},{3,5,10},30] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    for(n=2,50, print1((2^n + 2^(n\2))/2, ", ")) \\ G. C. Greubel, Sep 08 2017

Formula

a(n) = (1/2)*A005418(n+2).
G.f.: x^2*(3-x-6*x^2)/((1-2*x)*(1-2*x^2)).
G.f.: 3*G(0) where G(k) = 1 + x*(4*2^k + 1)*(1 + 2*x*G(k+1))/(1 + 2*2^k). - Sergei N. Gladkovskii, Dec 12 2011 [Edited by Michael Somos, Sep 09 2013]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) for n > 4. - Chai Wah Wu, Sep 10 2020
E.g.f.: (2*cosh(2*x) + 2*cosh(sqrt(2)*x) + 2*sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 4 - 6*x)/4. - Stefano Spezia, Jun 14 2025

A203477 a(n) = Product_{0 <= i < j <= n-1} (2^i + 2^j).

Original entry on oeis.org

1, 3, 90, 97200, 14276736000, 1107198567383040000, 178601637561927097909248000000, 237856509917156074017606774172522905600000000, 10420480393274493153643458442091600404477248333907230720000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203478.

Crossrefs

Programs

  • Magma
    [(&*[(&*[2^j + 2^k: k in [0..j]])/2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Maple
    a:= n-> mul(mul(2^i+2^j, i=0..j-1), j=1..n-1):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= 2^(j-1); z = 13;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]                       (* A203477 *)
    Table[v[n+1]/v[n], {n,z-1}]              (* A203478 *)
    Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}]  (* A164051 *)
    (* Second program *)
    Table[Product[(2^j^2)*QPochhammer[-1/2^j,2,j], {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • PARI
    a(n)=prod(i=0,n-2,prod(j=i+1,n-1,2^i+2^j)) \\ Charles R Greathouse IV, Feb 16 2021
    
  • SageMath
    [product(product(2^j + 2^k for k in range(j)) for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A203478 a(n) = v(n+1)/v(n), where v = A203477.

Original entry on oeis.org

3, 30, 1080, 146880, 77552640, 161309491200, 1331771159347200, 43809944057885491200, 5753472333233985788313600, 3019422280481195741706977280000, 6335279362770913356551778761441280000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^j + 2^n: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^(j-1); z = 13;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]                       (* A203477 *)
    Table[v[n+1]/v[n], {n,z-1}]              (* A203478 *)
    Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}]  (* A164051 *)
    (* Second program *)
    Table[Product[2^j +2^n, {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • PARI
    a(n)=prod(i=0,n-1,2^i+2^n) \\ Charles R Greathouse IV, Feb 16 2021
    
  • SageMath
    [product(2^j + 2^n for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) = A028362(n+1) * 2^(n*(n-1)/2). - Charles R Greathouse IV, Feb 16 2021
a(n) = Product_{j=0..n-1} (2^j + 2^n). - G. C. Greubel, Aug 28 2023
Showing 1-4 of 4 results.