cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A164772 Numbers n with property that average digit of n^2 is s=8.

Original entry on oeis.org

313, 298327, 9893887, 197483417, 282753937, 314623583, 315432874, 706399164, 773303937, 894303633, 947047833, 948675387, 989938887, 994987437, 998398167, 8882454614, 8888194417, 8943142063, 9374913167, 9416989417, 9476286187, 9949260676, 9949823114
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Examples

			a(1)=313 because 313^2=97969 and (9+7+9+6+9)/5=8.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Extensions

More terms from David Radcliffe Aug 26 2009
a(16)-a(23) from Lars Blomberg, Apr 29 2013

A164773 Numbers n with property that average digit of n^2 is s=7.

Original entry on oeis.org

1667, 2167, 2383, 2387, 2437, 2563, 2567, 2617, 2626, 2824, 2828, 2963, 3143, 3157, 17313, 19437, 19917, 21417, 21633, 22083, 22113, 22293, 23214, 23622, 23664, 23874, 23937, 24207, 24228, 24267, 24417, 24474, 25824, 25836, 25863, 26067
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Examples

			1667^2=2778889 and (2+7+7+8+8+8+9)/7=7
17313^2=299739969 and (2+9+9+7+3+9+9+6+9)/9=7.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • Mathematica
    Select[Range[30000],Mean[IntegerDigits[#^2]]==7&] (* Harvey P. Dale, Feb 22 2013 *)
  • PARI
    dsum(n)={my(s=0);while(n>9,s+=n%10;n\=10);s+n};
    for(n=1,1e6,if(dsum(n^2)/#Str(n^2)==7,print1(n","))) \\ Charles R Greathouse IV, Nov 01 2009

A164770 Numbers k with the property that the average digit of k^2 is 2.

Original entry on oeis.org

145, 152, 179, 190, 251, 3182, 3190, 3199, 3245, 3290, 3335, 3362, 3380, 3470, 3479, 3496, 3550, 3649, 3650, 3749, 3821, 4001, 4010, 4100, 4495, 4496, 4540, 4550, 4585, 4595, 4639, 4649, 4810, 4820, 4910, 4990, 5701, 5710, 5755, 5800, 5900, 6350, 6404
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Comments

There are 6368 such k's < 10^7: see link to 15217.html.

Examples

			145 is a term because 145^2 = 21025 and (2 + 1 + 0 + 2 + 5)/5 = 2.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • Mathematica
    Select[Range[6500],Mean[IntegerDigits[#^2]]==2&] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    dsum(n)={my(s=0);while(n>9,s+=n%10;n\=10);s+n};
    for(n=1,1e6,if(dsum(n^2)/#Str(n^2)==2,print1(n","))) \\ Charles R Greathouse IV, Nov 01 2009

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A164771 Numbers k such that the average digit of k^2 is 1.

Original entry on oeis.org

1, 1049, 1490, 10002, 10005, 10011, 10020, 10050, 10101, 10110, 10149, 10200, 10500, 11001, 11010, 11100, 11490, 12000, 14499, 15000, 17610, 18000, 20001, 20010, 20100, 21000, 24900, 30000, 33200, 35000, 36100, 44900, 44990, 45100
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Comments

There are 117 such n's < 10^7: 1, 1049, 1490, 10002, 10005, 10011, 10020, 10050, 10101, 10110, 10149, 10200, 10500, 11001, 11010, 11100, 11490, 12000, 14499, 15000, 17610, 18000, 20001, 20010, 20100, 21000, 24900, 30000, 33200, 35000, 36100, 44900, 44990, 45100, 46000, 54800, 55000, 64900, 71000, 80000, 1000006, 1000015, 1000051, 1000055, 1000060, 1000105, 1000150, 1000501, 1000510, 1000550, 1000600, 1001005, 1001050, 1001500, 1005001, 1005010, 1005100, 1005500, 1006000, 1006490, 1009951, 1010005, 1010050, 1010149, 1010500, 1011490, 1015000, 1024900, 1050001, 1050010, 1050100, 1051000, 1055000, 1060000, 1064900, 1095500, 1096000, 1100005, 1100050, 1100500, 1105000, 1114900, 1145000, 1150000, 1190000, 1224749, 1244990, 1249000, 1414249, 1415000, 1420000, 1424900, 1429000, 1451000, 1460000, 1484251, 1500001, 1500010, 1500100, 1501000, 1510000, 1550000, 1600000, 1735000, 1739000, 1789000, 1820000, 2000005, 2000050, 2000500, 2005000, 2050000, 2239000, 2261000, 2450000, 2500000, 2900000.
Or: Numbers k such that k^2 is in A061384, i.e., square root of squares in A061384. - M. F. Hasler, Dec 05 2010

Examples

			1049 is a term because 1049^2 = 1100401 and (1 + 1 + 0 + 0 + 4 + 0 + 1)/7 = 1.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • Mathematica
    Select[Range[50000],Mean[IntegerDigits[#^2]]==1&] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    {for(d=1,9, for(n=sqrtint(10^(d-1)-1)+1, sqrtint(10^d-1), my(n2=divrem(n^2,10)); sum( k=2,d, (n2=divrem(n2[1],10))[2],n2[2])/d==1 & print1(n",")))}  \\ M. F. Hasler, Dec 05 2010

Formula

A055642(a(n)^2) = A007953(a(n)^2). - M. F. Hasler, Dec 05 2010

Extensions

Terms up to a(117) checked with given PARI code by M. F. Hasler, Dec 05 2010

A164774 Numbers n with property that average digit of n^2 is s=5.

Original entry on oeis.org

8, 113, 122, 157, 158, 166, 176, 184, 193, 194, 212, 221, 238, 256, 257, 266, 274, 275, 283, 284, 292, 311, 3283, 3314, 3386, 3391, 3413, 3458, 3463, 3517, 3544, 3562, 3593, 3674, 3683, 3697, 3724, 3733, 3737, 3764, 3814, 3827, 3836, 3859, 3863, 3872, 3917
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Examples

			8^2=64 and (6+4)/2=5
113^2=12769 and (1+2+7+6+9)/5=5.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • PARI
    dsum(n)={my(s=0);while(n>9,s+=n%10;n\=10);s+n};
    for(n=1,1e6,if(dsum(n^2)/#Str(n^2)==5,print1(n","))) \\ Charles R Greathouse IV, Nov 01 2009

A164776 Numbers n with property that average digit of n^2 is s=4.

Original entry on oeis.org

2, 41, 58, 59, 68, 85, 95, 1027, 1034, 1036, 1072, 1081, 1088, 1108, 1124, 1135, 1144, 1153, 1169, 1232, 1234, 1243, 1252, 1259, 1268, 1277, 1279, 1295, 1297, 1306, 1315, 1331, 1340, 1342, 1349, 1358, 1360, 1369, 1385, 1394, 1405, 1423, 1441, 1448, 1457
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Examples

			41^2 = 1681 and (1 + 6 + 8 + 1)/4 = 4
58^2 = 3364 and (3 + 3 + 6 + 4)/4 = 4.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • PARI
    dsum(n)={my(s=0);while(n>9,s+=n%10;n\=10);s+n};
    for(n=1,1e6,if(dsum(n^2)/#Str(n^2)==4,print1(n","))) \\ Charles R Greathouse IV, Nov 01 2009

A164782 Numbers k with property that average digit of k^2 is 3.

Original entry on oeis.org

12, 15, 18, 21, 30, 330, 339, 345, 354, 360, 369, 375, 381, 399, 402, 405, 420, 429, 453, 459, 462, 465, 468, 471, 489, 492, 495, 498, 504, 540, 552, 555, 558, 561, 570, 579, 585, 639, 642, 645, 651, 660, 690, 708, 711, 720, 729, 735, 750, 780, 789, 795, 801
Offset: 1

Views

Author

Zak Seidov, Aug 26 2009

Keywords

Comments

All terms are multiples of 3.

Examples

			a(1) = 12 because 12^2 = 144 and (1 + 4 + 4)/3 = 3.
a(53) = 801 because 801^2 = 641601 and (6 + 4 + 1 + 6 + 0 + 1)/6 = 3.
		

Crossrefs

Subsequence of A164817.
Average of digits of n^2 = s: A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164778 (s=6), A164773 (s=7), A164772 (s=8).

Programs

  • GAP
    Filtered([1..801],n->Sum(ListOfDigits(n^2))/Size(ListOfDigits(n^2))=3); # Muniru A Asiru, Nov 01 2018
  • Maple
    filter:= proc(n) local L;
    L:= convert(n^2,base,10);
    convert(L,`+`)=3*nops(L)
    end proc:
    select(filter, [seq(i,i=3..1000,3)]); # Robert Israel, Nov 01 2018
  • Mathematica
    s={};Do[If[3==Mean[IntegerDigits[n^2]],Print[n];AppendTo[s,n]],{n,3,1000,3}];s
    Select[Range[1000],Mean[IntegerDigits[#^2]]==3&] (* Harvey P. Dale, Jan 13 2015 *)

A379602 a(n) is the least n-digit number whose square contains only digits greater than 5.

Original entry on oeis.org

3, 26, 264, 3114, 25824, 260167, 2639867, 25845676, 260147437, 2582245083, 25843178924, 258241744863, 2582010592114, 25825761924437, 258218875510676, 2581990857627114, 25820083014911063, 258199298347206526, 2581988959445543367, 25819892911624938937, 258198891881411585714
Offset: 1

Views

Author

Zhining Yang, Dec 27 2024

Keywords

Comments

Exists for all n because A379603(n) does (see Formulas there). - Michael S. Branicky, Dec 30 2024

Examples

			a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5.
		

Crossrefs

Programs

  • Mathematica
    f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k];]]; Table[f[m], {m, 10}]

Extensions

a(9) corrected and a(11) inserted by Michael S. Branicky, Dec 27 2024
More terms from Jinyuan Wang, Dec 27 2024

A379603 a(n) is the largest n-digit number whose square contains only digits greater than 5.

Original entry on oeis.org

3, 83, 937, 9833, 98336, 998333, 9994833, 99983333, 999939437, 9999833333, 99998333336, 999998333333, 9999983333336, 99999983333333, 999999833333336, 9999999833333333, 99999998333333336, 999999998333333333, 9999999983333333336, 99999999983333333333, 999999999833333333336
Offset: 1

Views

Author

Zhining Yang, Dec 27 2024

Keywords

Examples

			a(3) = 937 because among all 3-digit numbers, 937 is the largest whose square 877969 contains only digits greater than 5.
		

Crossrefs

Programs

  • Mathematica
    f[m_] := For[k = 10^m - 1, k > 10^(m - 1), k--, If[Min@IntegerDigits[k^2] > 5, Return[k];]];
    Table[f[m], {m, 10}]

Formula

Conjecture: It appears that for all n >= 5,
a(2*n) = 100^n - (5*10^n + 1)/3, and
a(2*n + 1) = 10*a(2*n) + 6.

Extensions

a(20)-a(21) from Jinyuan Wang, Dec 27 2024
Showing 1-9 of 9 results.