A164907 a(n) = (3*3^n-(-1)^n)/2.
1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Crossrefs
Programs
-
Magma
[ (3*3^n-(-1)^n)/2: n in [0..25] ];
-
Maple
A164907:=n->(3*3^n - (-1)^n)/2; seq(A164907(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014
-
Mathematica
Table[(3*3^n - (-1)^n)/2, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 21 2014 *) LinearRecurrence[{2,3},{1,5},50] (* Harvey P. Dale, Oct 31 2018 *)
Formula
a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1+3*x)/((1+x)*(1-3*x)).
a(n) = 3*a(n-1)+2*(-1)^n. - Carmine Suriano, Mar 21 2014
Comments