cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165496 Values k: A165495(k) is odd.

Original entry on oeis.org

1, 3, 6, 7, 10, 11, 13, 16, 24, 30, 32, 40, 55, 61, 62, 91, 115, 129, 139, 190, 218, 325, 330, 344, 359, 412, 499, 709, 762, 779, 791, 1392, 2230, 2440, 2947, 3355, 6008, 6124, 6718, 6899, 7563, 7872, 8070, 12529, 15204, 17582, 19313, 20706, 28825
Offset: 1

Views

Author

Hugo van der Sanden, Sep 21 2009

Keywords

Comments

If A064491 reaches 2(2k-1)^2, it will then start a run of odd numbers if k is in this sequence.

Crossrefs

A064491 a(1) = 1, a(n+1) = a(n) + tau(a(n)), where tau(n) (A000005) is the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 7, 9, 12, 18, 24, 32, 38, 42, 50, 56, 64, 71, 73, 75, 81, 86, 90, 102, 110, 118, 122, 126, 138, 146, 150, 162, 172, 178, 182, 190, 198, 210, 226, 230, 238, 246, 254, 258, 266, 274, 278, 282, 290, 298, 302, 306, 318, 326, 330, 346, 350, 362, 366, 374
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 04 2001

Keywords

Comments

a(n) = partial sums of A165930(n). [Jaroslav Krizek, Sep 30 2009]

References

  • Claudia Spiro, Problem proposed at West Coast Number Theory Meeting, 1977. [If you change the starting term, does the resulting sequence always join this one? Does the parity of terms change infinitely often?] - From N. J. A. Sloane, Jan 11 2013

Crossrefs

Programs

  • Haskell
    a064491 n = a064491_list !! (n-1)
    a064491_list = iterate a062249 1  -- Reinhard Zumkeller, Mar 29 2014
    
  • Mathematica
    a[n_] := a[n] = a[n - 1] + DivisorSigma[0, a[n - 1]]; a[1] = 1; Table[a[n], {n, 1, 57}] (* Jean-François Alcover, Oct 11 2012 *)
    NestList[#+DivisorSigma[0,#]&,1,60] (* Harvey P. Dale, Feb 05 2017 *)
  • PARI
    { for (n=1, 1000, if (n>1, a+=numdiv(a), a=1); write("b064491.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 16 2009
    
  • Python
    from itertools import islice
    from sympy import divisor_count
    def A064491gen(): # generator of terms
        n = 1
        yield n
        while True:
            n += divisor_count(n)
            yield n
    A064491_list = list(islice(A064491gen(),20)) # Chai Wah Wu, Dec 13 2021

Formula

It seems likely that there exist constants c_1 and c_2 such that c_1*n*log(n) < a(n) < c_2*n*log(n) for all sufficiently large n. - Franklin T. Adams-Watters, Jun 25 2008
a(n+1) = A062249(a(n)). - Reinhard Zumkeller, Mar 29 2014

Extensions

Beginning of sequence corrected by T. D. Noe, Sep 13 2007

A165494 Iterations of k -> k+tau(k) from 2(2n-1)^2 until result not divisible by 4.

Original entry on oeis.org

2, 3, 3, 3, 2, 3, 7, 2, 3, 6, 2, 9, 3, 2, 10, 3, 2, 2, 5, 7, 3, 4, 7, 10, 5, 5, 10, 8, 2, 7, 3, 8, 7, 4, 9, 36, 13, 9, 2, 6, 7, 5, 2, 2, 9, 4, 30, 2, 16, 4, 6, 6, 4, 11, 24, 16, 11, 9, 3, 11, 15, 2, 9, 10, 2, 26, 2, 10, 3, 3, 4, 13, 11, 5, 12, 3, 7, 17, 21, 17, 17, 12, 5, 4, 3, 8, 19, 9, 2
Offset: 1

Views

Author

Hugo van der Sanden, Sep 21 2009

Keywords

Comments

This sequence and A165495 explore a critical aspect of the behavior of A064491.

Examples

			For a(2) we start at 2.3^2=18; 18+tau(18)=24; 24+tau(24)=32; 32+tau(32)=38, which is not divisible by 4, so a(2)=3 for the 3 iterations needed.
		

Crossrefs

Showing 1-3 of 3 results.