A096335 Number of iterations of n -> n + tau(n) needed for the trajectory of n to join the trajectory of A064491, or -1 if the two trajectories never merge.
0, 0, 2, 0, 1, 3, 0, 1, 0, 2, 8, 0, 7, 1, 6, 5, 6, 0, 5, 3, 4, 3, 4, 0, 3, 2, 13, 2, 13, 1, 12, 0, 11, 1, 10, 8, 10, 0, 9, 7, 9, 0, 8, 1, 7, 1, 8, 6, 7, 0, 6, 6, 6, 5, 5, 0, 4, 5, 4, 26, 3, 4, 2, 0, 2, 3, 2, 3, 1, 2, 0, 25, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 39, 24, 38
Offset: 1
Keywords
Examples
a(6)=3 because the trajectory for 1 (sequence A064491) starts 1->2->4->7->9->12->18->24->32->38->42... and the trajectory for 6 starts 6->10->14->18->24->32->38->42->50->56... so the sequence beginning with 6 joins A064491 after 3 steps.
References
- Claudia Spiro, Problem proposed at West Coast Number Theory Meeting, 1977. - From N. J. A. Sloane, Jan 11 2013
Links
- T. D. Noe, Table of n, a(n) for n = 1..11000
- T. D. Noe, Logarithmic plot of 10^6 terms
Programs
-
Mathematica
s = 1; t = Join[{s}, Table[s = s + DivisorSigma[0, s], {n, 2, 1000}]]; mx = Max[t]; Table[r = n; gen = 0; While[r < mx && ! MemberQ[t, r], gen++; r = r + DivisorSigma[0, r]]; If[r >= mx, gen = -1]; gen, {n, 100}] (* T. D. Noe, Jan 13 2013 *)
Extensions
Escape clause added to definition by N. J. A. Sloane, Nov 09 2020
Comments