cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165516 Perfect squares (A000290) that can be expressed as the sum of three consecutive triangular numbers (A000217).

Original entry on oeis.org

4, 64, 361, 6241, 35344, 611524, 3463321, 59923081, 339370084, 5871850384, 33254804881, 575381414521, 3258631508224, 56381506772644, 319312633001041, 5524812282304561, 31289379402593764, 541375222159074304, 3066039868821187801, 53049246959306977201, 300440617765073810704, 5198284826789924691364
Offset: 1

Views

Author

Ant King, Sep 25 2009, Oct 01 2009

Keywords

Comments

Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2+9k+8=2s^2. Hence solutions occur whenever 1/2 (3k^2+9k+8) is a perfect square, or equivalently when s>=2 and sqrt(24s^2-15) is congruent to 3 mod 6. Furthermore, with the exception of the first term, the members of this sequence are precisely those perfect squares that are also centered triangular numbers (A005448). For s>=2, the values of s are in A129445, and the corresponding indices of the smallest of the 3 triangular numbers are given in A165517.

Examples

			The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 (=T63+T64+T65), and hence a(4)=6241.
		

Crossrefs

Programs

  • Magma
    I:=[4, 64, 361, 6241, 35344]; [n le 5 select I[n] else Self(n-1) + 98*Self(n-2) - 98*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Oct 21 2018
  • Mathematica
    Select[Range[2,1.8 10^7],Mod[Sqrt[24#^2-15],6]==3 &]^2
    CoefficientList[Series[(4 + 60 x - 95 x^2 + x^4)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[ {1,98,-98,-1,1}, {4, 64, 361, 6241, 35344}, 50] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    Vec(O(x^66)+x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2))) \\ Joerg Arndt, Mar 13 2014
    

Formula

a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
a(n) = 98*a(n-2) - a(n-4) - 30. - Ant King, Dec 09 2010
a(n) = (1/32)*(10 -3*(sqrt(6)-3) * (5-2*sqrt(6))^n + (2+ sqrt(6)) * (-5-2*sqrt(6))^n -(sqrt(6)-2) *(2*sqrt(6)-5)^n + 3*(3+sqrt(6)) *(5+2*sqrt(6))^n).
G.f.: x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2)).
16*a(n) = 5 +9*A072256(n+1) +2*(-1)^n*A054320(n). - R. J. Mathar, Apr 28 2020

Extensions

a(1) = 4 added by N. J. A. Sloane, Sep 28 2009, at the suggestion of Alexander R. Povolotsky
a(16)-a(21) added by Alex Ratushnyak, Mar 12 2014