A165517
Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).
Original entry on oeis.org
0, 5, 14, 63, 152, 637, 1518, 6319, 15040, 62565, 148894, 619343, 1473912, 6130877, 14590238, 60689439, 144428480, 600763525, 1429694574, 5946945823, 14152517272, 58868694717, 140095478158, 582740001359, 1386802264320
Offset: 1
The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 = T(63) + T(64) + T(65). Hence a(4)=63.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Tom Beldon and Tony Gardiner, Triangular Numbers and Perfect Squares, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
-
I:=[0, 5, 14, 63, 152]; [n le 5 select I[n] else Self(n-1) + 10*Self(n-2) - 10*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Oct 21 2018
-
TriangularNumber[ n_ ]:=1/2 n (n+1);Select[ Range[ 0,10^7 ], IntegerQ[ Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1 ]+TriangularNumber[ #+2 ] ] ] & ]
CoefficientList[Series[x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)), {x,0,50}], x] (* or *) LinearRecurrence[{1,10,-10,-1,1}, {0, 5, 14, 63, 152}, 50] (* G. C. Greubel, Feb 17 2017 *)
-
x='x+O('x^50); concat([0], Vec(x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)))) \\ G. C. Greubel, Feb 17 2017
A165518
Perfect squares (A000290) that can be expressed as the sum of four consecutive triangular numbers (A000217).
Original entry on oeis.org
4, 100, 3364, 114244, 3880900, 131836324, 4478554084, 152139002500, 5168247530884, 175568277047524, 5964153172084900, 202605639573839044, 6882627592338442564, 233806732499933208100, 7942546277405390632804, 269812766699283348307204, 9165691521498228451812100, 311363698964240484013304164
Offset: 1
As the third perfect square that can be expressed as the sum of four consecutive triangular numbers is 3364 = T(39) + T(40) + T(41) + T(42), we have a(3)=3364.
The first term, 4, equals T(-1) + T(0) + T(1) + T(2).
- Harvey P. Dale, Table of n, a(n) for n = 1..600
- Tom Beldon and Tony Gardiner, Triangular Numbers and Perfect Squares, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
I:=[4,100,3364]; [n le 3 select I[n] else 35*Self(n-1) - 35*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Oct 21 2018
-
A165518:=n->(1/2)*(2+(3+2*sqrt(2))^(2*n+1)+(3-2*sqrt(2))^(2*n+1)); seq(A165518(k), k=1..20); # Wesley Ivan Hurt, Oct 24 2013
-
TriangularNumber[n_]:=1/2 n (n+1); data=Select[Range[10^7],IntegerQ[Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1]+TriangularNumber[ #+2]+TriangularNumber[ #+3]]] &];2(#^2+4#+5)&/@data
t={4, 100}; Do[AppendTo[t, 34 t[[-1]] - t[[-2]] - 32], {20}]; t
LinearRecurrence[{35,-35,1},{4,100,3364},20] (* Harvey P. Dale, May 22 2012 *)
-
x='x+O('x^50); Vec(4*x*(1-10*x+x^2)/((1-x)*(1-34*x+x^2))) \\ G. C. Greubel, Oct 21 2018
A249483
Squares (A000290) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 4, 64, 361, 6241, 35344, 611524, 3463321, 59923081, 339370084, 5871850384, 33254804881, 575381414521, 3258631508224, 56381506772644, 319312633001041, 5524812282304561, 31289379402593764, 541375222159074304, 3066039868821187801, 53049246959306977201
Offset: 1
64 is in the sequence because the 8th square is 64, which is also the 7th centered triangular number.
-
I:=[1,4,64,361,6241]; [n le 5 select I[n] else Self(n-1)+98*Self(n-2)-98*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(x^2 - 5 x + 1) (x^2 + 8 x + 1) / ((1 - x) (x^2 - 10 x + 1) (x^2 + 10 x + 1)), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
Vec(-x*(x^2-5*x+1)*(x^2+8*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
Showing 1-3 of 3 results.
Comments