A165518 Perfect squares (A000290) that can be expressed as the sum of four consecutive triangular numbers (A000217).
4, 100, 3364, 114244, 3880900, 131836324, 4478554084, 152139002500, 5168247530884, 175568277047524, 5964153172084900, 202605639573839044, 6882627592338442564, 233806732499933208100, 7942546277405390632804, 269812766699283348307204, 9165691521498228451812100, 311363698964240484013304164
Offset: 1
Examples
As the third perfect square that can be expressed as the sum of four consecutive triangular numbers is 3364 = T(39) + T(40) + T(41) + T(42), we have a(3)=3364. The first term, 4, equals T(-1) + T(0) + T(1) + T(2).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..600
- Tom Beldon and Tony Gardiner, Triangular Numbers and Perfect Squares, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
Magma
I:=[4,100,3364]; [n le 3 select I[n] else 35*Self(n-1) - 35*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Oct 21 2018
-
Maple
A165518:=n->(1/2)*(2+(3+2*sqrt(2))^(2*n+1)+(3-2*sqrt(2))^(2*n+1)); seq(A165518(k), k=1..20); # Wesley Ivan Hurt, Oct 24 2013
-
Mathematica
TriangularNumber[n_]:=1/2 n (n+1); data=Select[Range[10^7],IntegerQ[Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1]+TriangularNumber[ #+2]+TriangularNumber[ #+3]]] &];2(#^2+4#+5)&/@data t={4, 100}; Do[AppendTo[t, 34 t[[-1]] - t[[-2]] - 32], {20}]; t LinearRecurrence[{35,-35,1},{4,100,3364},20] (* Harvey P. Dale, May 22 2012 *)
-
PARI
x='x+O('x^50); Vec(4*x*(1-10*x+x^2)/((1-x)*(1-34*x+x^2))) \\ G. C. Greubel, Oct 21 2018
Formula
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
a(n) = 34*a(n-1) - a(n-2) - 32.
a(n) = (2 + (3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1))/2.
a(n) = ceiling((1/2)*(2 + (3+2*sqrt(2))^(2n+1))).
G.f.: 4*x*(x^2-10*x+1)/((1-x)*(x^2-34*x+1)).
a(n) = 4*A008844(n-1). - R. J. Mathar, Dec 14 2010
a(n) = A075870(n)^2. - Richard R. Forberg, Aug 15 2013
Extensions
Extended by T. D. Noe, Dec 09 2010
Comments