cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A165808 Expansion of x*(403+2967*x+1047*x^2-x^3)/(1-x)^4.

Original entry on oeis.org

403, 4579, 16945, 41917, 83911, 147343, 236629, 356185, 510427, 703771, 940633, 1225429, 1562575, 1956487, 2411581, 2932273, 3522979, 4188115, 4932097, 5759341, 6674263, 7681279, 8784805, 9989257, 11299051, 12718603, 14252329, 15904645, 17679967, 19582711
Offset: 1

Views

Author

A.K. Devaraj, Sep 29 2009

Keywords

Comments

Old name was: As mentioned in short description of A165806, polynomials have the following unique property: let f(x) be a polynomial in x. Then f(x+k*f(x)) is congruent to 0 (mod(f(x)); here k belongs to N. The present case pertains to f(x) = x^3 + 2x + 11 when x is complex (2 + 3i). The quotient f(x+k*f(x))/f(x), for any given k, consists of two parts: a) a rational integer part and b) rational integer coefficient of sqrt(-1). This sequence pertains to a.

Examples

			f(x) = x^3 + 2*x + 11. When x = 2 + 3*i, we get f(x) = -31 + 15*i. x + f(x) = -29 + 18*i. f(-29 + 18*i) = 3752 + 39618*i. When this value is divided by (-31 + 15*i) we get 403 - 1083*i; needless to say, PARI takes care of necessary rationalization.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {403, 4579, 16945, 41917}, 100](* G. C. Greubel, Apr 08 2016 *)
  • PARI
    Vec((403+2967*x+1047*x^2-x^3)/(1-x)^4+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

Formula

From R. J. Mathar, Sep 30 2009: (Start)
a(n) = 1-13*n-321*n^2+736*n^3.
G.f.: x*(403+2967*x+1047*x^2-x^3)/(1-x)^4. (End)
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1 + 402*x + 1887*x^2 + 736*x^3)*exp(x) - 1. [corrected by Jason Yuen, Aug 14 2025] (End)

Extensions

More terms from R. J. Mathar, Sep 30 2009
Edited by Jon E. Schoenfield, Dec 12 2013

A168244 a(n) = 1 + 3*n - 2*n^2.

Original entry on oeis.org

1, 2, -1, -8, -19, -34, -53, -76, -103, -134, -169, -208, -251, -298, -349, -404, -463, -526, -593, -664, -739, -818, -901, -988, -1079, -1174, -1273, -1376, -1483, -1594, -1709, -1828, -1951, -2078, -2209, -2344, -2483, -2626, -2773, -2924, -3079, -3238, -3401, -3568, -3739, -3914, -4093, -4276, -4463, -4654, -4849
Offset: 0

Views

Author

A.K. Devaraj, Nov 21 2009

Keywords

Comments

Consider the quadratic cyclotomic polynomial f(x) = x^2+x+1 and the quotients f(x + n*f(x))/f(x), as in A168235 and A168240. a(n) is the real part of the quotient at x = 1+sqrt(-5).
The imaginary part of the quotient is sqrt(5)*A045944(n).
As stated in short description of A168244 the quotient is in two parts: rational integers (cf. A168244) and rational integer multiples of sqrt(-5). It so happens that the sequence of rational integer coefficients of sqrt(-5) is A045944. - A.K. Devaraj, Nov 22 2009
This sequence contains half of all integers m such that -8*m +17 is an odd square. The other half are found in A091823 multiplied by -1. The squares resulting from A168244 are (4*n - 3)^2, those from A091823 are (4*n + 3)^2. - Klaus Purath, Jul 11 2021

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 1 + x*(2-7*x+x^2)/(1-x)^3.
a(-n) = -A091823(n), a(0) = 1. - Michael Somos, May 11 2014
E.g.f.: (1 + x - 2*x^2)*exp(x). - G. C. Greubel, Apr 09 2016
a(n) = a(n-2) + (-2)*sqrt((-8)*a(n-1) + 17), n > 1. - Klaus Purath, Jul 08 2021

Extensions

Edited, definition simplified, sequence extended beyond a(5) by R. J. Mathar, Nov 23 2009
a(0)=1 added by N. J. A. Sloane, Apr 09 2016

A168235 1+5*n+7*n^2.

Original entry on oeis.org

13, 39, 79, 133, 201, 283, 379, 489, 613, 751, 903, 1069, 1249, 1443, 1651, 1873, 2109, 2359, 2623, 2901, 3193, 3499, 3819, 4153, 4501, 4863, 5239, 5629, 6033, 6451, 6883, 7329, 7789, 8263, 8751, 9253, 9769, 10299, 10843, 11401, 11973, 12559, 13159, 13773
Offset: 1

Views

Author

A.K. Devaraj, Nov 21 2009

Keywords

Comments

Consider the quadratic cyclotomic polynomial f(x) = x^2+x+1 and the quotients defined by f(x + n*f(x))/f(x). a(n) is the quotient at x=2.
See A168240 for x=3 or A168244 for x= 1+sqrt(-5).

Examples

			When x = 2, f(x) = 7. Hence at n=1, f( x + f(x))/f(x) = 13 = a(1).
		

Crossrefs

Programs

Formula

a(1)=13, a(2)=39, a(3)=79, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Feb 07 2015
From G. C. Greubel, Apr 09 2016: (Start)
G.f.: (1 + 10*x + 3*x^2)/(1-x)^3.
E.g.f.: (1 + 12*x + 7*x^2)*exp(x). (End)

Extensions

Edited, definition simplified, sequence extended beyond a(8) by R. J. Mathar, Nov 23 2009

A166957 a(n) = 841*n^3 + 261*n^2 + 28*n + 1.

Original entry on oeis.org

1, 1131, 7829, 25141, 58113, 111791, 191221, 301449, 447521, 634483, 867381, 1151261, 1491169, 1892151, 2359253, 2897521, 3512001, 4207739, 4989781, 5863173, 6832961, 7904191, 9081909, 10371161, 11776993, 13304451
Offset: 0

Views

Author

A.K. Devaraj, Oct 25 2009

Keywords

Comments

Polynomials in one variable have a certain property viz f(x+f(x)) == 0 (mod f(x)). This is true even when the polynomial is in two variables (not necessarily homogeneous). This sequence is a demonstration when the polynomial is x^3 + 2*x*y + y^2 (x = 2, y=3).
When x = 2 and y=3, f(x,y) = 29. Hence f((2 + 29), (3 + 29))/29 = 1131.

Crossrefs

Programs

  • GAP
    List([0..40], n-> 1 +28*n +261*n^2 +841*n^3); # G. C. Greubel, Sep 02 2019
  • Magma
    I:=[1131, 7829, 25141, 58113]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 01 2012
    
  • Magma
    [1 +28*n +261*n^2 +841*n^3: n in [0..40]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    seq(1 +28*n +261*n^2 +841*n^3, n=0..40); # G. C. Greubel, Sep 02 2019
  • Mathematica
    CoefficientList[Series[(1131+3305*x+611*x^2-x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 01 2012 *)
    Table[841n^3+261n^2+28n+1,{n,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{1131,7829,25141,58113},30] (* Harvey P. Dale, Apr 11 2013 *)
  • PARI
    a(n) = ((2+n*29)^3 + 2*(2+n*29)*(3+n*29) + (3+n*29)^2)/29
    
  • Sage
    [1 +28*n +261*n^2 +841*n^3 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

a(n) = 841*n^3 + 261*n^2 + 28*n + 1.
G.f.: x*(1131 + 3305*x + 611*x^2 - x^3)/(1-x)^4 . - R. J. Mathar, Sep 02 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 01 2012
E.g.f.: (1 + 1130*x + 2784*x^2 + 841*x^3)*exp(x). - G. C. Greubel, Apr 09 2016

Extensions

Formula, description, editing, and program correction by Charles R Greathouse IV, Nov 04 2009
a(0)=1 added by N. J. A. Sloane, Apr 09 2016

A167190 a(n) = 1 + 85*n + 2232*n^2 + 15276*n^3.

Original entry on oeis.org

17594, 131307, 432796, 1013717, 1965726, 3380479, 5349632, 7964841, 11317762, 15500051, 20603364, 26719357, 33939686, 42356007, 52059976, 63143249, 75697482, 89814331, 105585452, 123102501, 142457134, 163741007, 187045776
Offset: 1

Views

Author

A.K. Devaraj, Oct 30 2009

Keywords

Comments

As mentioned in A166957, polynomials in two variables, not necessarily homogeneous, also have a property similar to that in a single variable (cf. A165806, A165808 and A165809) viz f(x+k*f(x,y), y+k*f(x,y)) == 0 (mod f(x,y)). The quotient has two parts: a rational integer and a rational integer coefficient of sqrt(-1), when x belongs to Z(x = 5) and y is complex (sqrt(-1)). The polynomial considered is identical with that in A166957 viz x^3 + 2*x*y + y^2. The present sequence is only that of the rational integers and seq A167191 will consist of rational integer coefficients of sqrt(-1). Note: k belongs to N.

Examples

			When x = 5 and y = i, f(x,y) = x^3 + 2xy + y^2 = 124 + 10i. The quotient of f(x + f(x,y), y + f(x,y))/(124 + 10i) is 17594 + 2664i.
		

Crossrefs

Programs

  • GAP
    List([0..40], n-> 1 +85*n +2232*n^2 +15276*n^3); # G. C. Greubel, Sep 01 2019
  • Magma
    I:=[17594, 131307, 432796, 1013717]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
    
  • Maple
    seq(1 + 85*n + 2232*n^2 + 15276*n^3, n=1..40); # G. C. Greubel, Sep 01 2019
  • Mathematica
    CoefficientList[Series[(17594+60931*x+13132*x^2-x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    Table[1 +85*n +2232*n^2 +15276*n^3, {n,40}] (* G. C. Greubel, Sep 01 2019 *)
  • PARI
    vector(40, n, 1 +85*n +2232*n^2 +15276*n^3) \\ G. C. Greubel, Sep 01 2019
    
  • Sage
    [1 +85*n +2232*n^2 +15276*n^3 for n in (0..40)] # G. C. Greubel, Sep 01 2019
    

Formula

G.f.: x*(17594 + 60931*x + 13132*x^2 - x^3)/(1-x)^4 . - R. J. Mathar, Sep 02 2011
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - R. J. Mathar, Sep 02 2011
E.g.f.: (1 + 17593*x + 48060*x^2 + 15276*x^3)*exp(x) -1. - G. C. Greubel, Apr 09 2016

Extensions

Extended beyond a(6) by R. J. Mathar, Nov 17 2009

A168240 a(n) = 13*n^2 + 7*n + 1.

Original entry on oeis.org

21, 67, 139, 237, 361, 511, 687, 889, 1117, 1371, 1651, 1957, 2289, 2647, 3031, 3441, 3877, 4339, 4827, 5341, 5881, 6447, 7039, 7657, 8301, 8971, 9667, 10389, 11137, 11911, 12711, 13537, 14389, 15267, 16171, 17101, 18057, 19039, 20047, 21081, 22141, 23227
Offset: 1

Views

Author

A.K. Devaraj, Nov 21 2009

Keywords

Comments

Consider the quadratic cyclotomic polynomial f(x) = x^2+x+1 and the quotients defined by f(x + n*f(x))/f(x). a(n) is the quotient at x=3.

Examples

			f(x) = 13 when x = 3. Hence at n = 1, f(x + f(x))/f(x) = 21 = a(1).
		

Crossrefs

Programs

Formula

From R. J. Mathar, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(21+4*x+x^2)/(1-x)^3. (End)
E.g.f.: (13*x^2 + 20*x + 1)*exp(x). - G. C. Greubel, Apr 09 2016

Extensions

Edited, definition simplified, sequence extended beyond a(8) by R. J. Mathar, Nov 23 2009

A167467 a(n) = 25*n^3 - n*(5*n+1)/2 + 1.

Original entry on oeis.org

23, 190, 652, 1559, 3061, 5308, 8450, 12637, 18019, 24746, 32968, 42835, 54497, 68104, 83806, 101753, 122095, 144982, 170564, 198991, 230413, 264980, 302842, 344149, 389051, 437698, 490240, 546827, 607609, 672736, 742358, 816625, 895687, 979694, 1068796
Offset: 1

Views

Author

A.K. Devaraj, Nov 05 2009

Keywords

Comments

Also the real part of f(x+n*f(x,y,z), y+n*f(x,y,z), z+n*f(x,y,z))/f(x,y,z) for f(x,y,z) = x^3+y^2+z at x=(-1+i*sqrt(3))/2, y=i and z=5.
If f(x,y,z) is a trivariate polynomial, f(x+n*f(x,y,z),y+n*f(x,y,z),z+n*f(x,y,z)) is congruent to 0 (mod f(x,y,z)).
The ratio f(x+n*f,y+n*f,z+n*f)/f of these two functions is decomposed into the real part (this sequence here), and the imaginary part. The imaginary part is 2*n*i + sqrt(3)*A167469(n)*i, where i=sqrt(-1) is the imaginary unit.

Examples

			f(x +f(x,y,z), y + f(x,y,z), z + f(x,y,z)) = (23 + 2i + 6*sqrt(3)*i)* f(x,y,z) at n=1.
		

Crossrefs

Programs

  • GAP
    List([1..50], n-> 25*n^3 - n*(5*n+1)/2 + 1); # G. C. Greubel, Sep 01 2019
  • Magma
    [25*n^3 - n*(5*n+1)/2 + 1: n in [1..50]]; // G. C. Greubel, Sep 01 2019
    
  • Maple
    f := proc(x,y,z) x^3+y^2+z ; end proc:
    A167467 := proc(n) local rho,a ,x,y,z; a := f(x+n*f(x,y,z),y+n*f(x,y,z),z+n*f(x,y,z))/f(x,y,z) ; rho := (-1+I*sqrt(3))/2 ; a := subs({x = rho, y=I,z=5},a) ; a := expand(a) ; Re(a) ; end:
    seq(A167467(n),n=1..50) ; # R. J. Mathar, Nov 12 2009
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{23,190,652,1559},50] (* Harvey P. Dale, Sep 28 2012 *)
  • PARI
    a(n)=1+25*n^3-n*(5*n+1)/2 \\ Charles R Greathouse IV, Jul 07 2013
    
  • Sage
    [25*n^3 - n*(5*n+1)/2 + 1 for n in (1..50)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(23 + 98*x + 30*x^2 - x^3)/(1-x)^4.
E.g.f.: (2 + 44*x + 145*x^2 + 50*x^3)*exp(x)/2 -1. - G. C. Greubel, Apr 09 2016

Extensions

a(2) and a(3) corrected, definition simplified and sequence extended by R. J. Mathar, Nov 12 2009

A171216 a(n) = (4^(5*n+1) + 7)/11.

Original entry on oeis.org

373, 381301, 390451573, 399822410101, 409418147942773, 419244183493398901, 429306043897240473973, 439609388950774245347701, 450160014285592827236045173, 460963854628447055089710256501, 472026987139529784411863302656373
Offset: 1

Views

Author

A.K. Devaraj, Dec 05 2009

Keywords

Comments

In A165806, A165808 & A165809 a congruence property of polynomial functions was demonstrated. In the present sequence a congruence property of exponential functions is demonstrated. Let the function be f(n) = 2^n + 7. Then f(n + k*phi(f(n))) is congruent to 0 mod(f(n)). This is a sequence of quotients generated by (f(n + k*phi f(n)))/f(n) when n = 2.

References

  • A. K. Devaraj, "Euler's generalisation of Fermat's theorem - a further generalisation" - Hawaii International conference on Mathematics & Statistics (2004). [ISSN 15503747]

Programs

Formula

G.f. -x*(-373+1024*x) / ( (1024*x-1)*(x-1) ). - R. J. Mathar, Oct 08 2011

A165987 a(n) is the trace of the matrix f(X + n*f(X))/f(X), where X is the 2 X 2 matrix [-13, 17; 31, 97] and f(x) = x^3 - 5*x + 67.

Original entry on oeis.org

1099258818702, 8792791182238, 29674231047422, 70337212371066, 137375369109982, 237382335220982, 376951744660878, 562677231386482, 801152429354606, 1098970972522062, 1462726494845662, 1899012630282218, 2414423012788542, 3015551276321446, 3708991054837742
Offset: 1

Views

Author

A.K. Devaraj, Oct 03 2009

Keywords

Comments

Old name was: As mentioned in the short description (cf. A165806 & A165808) polynomials have the property: f(x + k*f(x)) is congruent to 0 mod(f(x)). This is true even if the variable is a square matrix. For this sequence let X be a 2x2 matrix (X belongs to Z): col1:-13, 31;col2: 17, 97. Let the polynomial be X^3 -5X + 67. The present sequence is a sequence of traces of the matrices resulting from the division of f(X + k*f(X))/f(X). Here k belongs to N.

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    f:= x-> x^3-5*x+67:
    a:= n-> (X-> Trace(f(X+n*f(X)).f(X)^(-1)))(<<-13|17>, <31|97>>):
    seq(a(n), n=1..15);  # Alois P. Heinz, Mar 13 2024

Formula

G.f.: 2*(549309615337*x^3+2197877953721*x^2+549629409347*x+1)/(x-1)^4. - Alois P. Heinz, Mar 13 2024

Extensions

a(5)-a(15) added and edited by Alois P. Heinz, Mar 13 2024
Showing 1-9 of 9 results.